Metamath Proof Explorer


Theorem lubsn

Description: The least upper bound of a singleton. ( chsupsn analog.) (Contributed by NM, 20-Oct-2011)

Ref Expression
Hypotheses lubsn.b 𝐵 = ( Base ‘ 𝐾 )
lubsn.u 𝑈 = ( lub ‘ 𝐾 )
Assertion lubsn ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 lubsn.b 𝐵 = ( Base ‘ 𝐾 )
2 lubsn.u 𝑈 = ( lub ‘ 𝐾 )
3 dfsn2 { 𝑋 } = { 𝑋 , 𝑋 }
4 3 fveq2i ( 𝑈 ‘ { 𝑋 } ) = ( 𝑈 ‘ { 𝑋 , 𝑋 } )
5 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
6 simpl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝐾 ∈ Lat )
7 simpr ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝑋𝐵 )
8 2 5 6 7 7 joinval ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) = ( 𝑈 ‘ { 𝑋 , 𝑋 } ) )
9 4 8 eqtr4id ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) )
10 1 5 latjidm ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) = 𝑋 )
11 9 10 eqtrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = 𝑋 )