Metamath Proof Explorer


Theorem lvecring

Description: The scalar component of a vector space is a ring. (Contributed by SN, 28-May-2023)

Ref Expression
Hypothesis lvecring.1 𝐹 = ( Scalar ‘ 𝑊 )
Assertion lvecring ( 𝑊 ∈ LVec → 𝐹 ∈ Ring )

Proof

Step Hyp Ref Expression
1 lvecring.1 𝐹 = ( Scalar ‘ 𝑊 )
2 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
3 1 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
4 2 3 syl ( 𝑊 ∈ LVec → 𝐹 ∈ Ring )