Step |
Hyp |
Ref |
Expression |
1 |
|
marepvfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
marepvfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
marepvfval.q |
⊢ 𝑄 = ( 𝑁 matRepV 𝑅 ) |
4 |
|
marepvfval.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
5 |
1 2 3 4
|
marepvval0 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑀 𝑄 𝐶 ) = ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑀 𝑄 𝐶 ) = ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
7 |
6
|
fveq1d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑀 𝑄 𝐶 ) ‘ 𝐾 ) = ( ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ‘ 𝐾 ) ) |
8 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
9 |
|
eqeq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑗 = 𝑘 ↔ 𝑗 = 𝐾 ) ) |
10 |
9
|
ifbid |
⊢ ( 𝑘 = 𝐾 → if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) = if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) |
11 |
10
|
mpoeq3dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
12 |
|
simp3 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → 𝐾 ∈ 𝑁 ) |
13 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
14 |
13
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
15 |
14 14
|
jca |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
17 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ∈ V ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ∈ V ) |
19 |
8 11 12 18
|
fvmptd3 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ‘ 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
20 |
7 19
|
eqtrd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑀 𝑄 𝐶 ) ‘ 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |