Metamath Proof Explorer


Theorem mavmulval

Description: Multiplication of a vector with a square matrix. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mavmulval.a 𝐴 = ( 𝑁 Mat 𝑅 )
mavmulval.m × = ( 𝑅 maVecMul ⟨ 𝑁 , 𝑁 ⟩ )
mavmulval.b 𝐵 = ( Base ‘ 𝑅 )
mavmulval.t · = ( .r𝑅 )
mavmulval.r ( 𝜑𝑅𝑉 )
mavmulval.n ( 𝜑𝑁 ∈ Fin )
mavmulval.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐴 ) )
mavmulval.y ( 𝜑𝑌 ∈ ( 𝐵m 𝑁 ) )
Assertion mavmulval ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑖𝑁 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mavmulval.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mavmulval.m × = ( 𝑅 maVecMul ⟨ 𝑁 , 𝑁 ⟩ )
3 mavmulval.b 𝐵 = ( Base ‘ 𝑅 )
4 mavmulval.t · = ( .r𝑅 )
5 mavmulval.r ( 𝜑𝑅𝑉 )
6 mavmulval.n ( 𝜑𝑁 ∈ Fin )
7 mavmulval.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐴 ) )
8 mavmulval.y ( 𝜑𝑌 ∈ ( 𝐵m 𝑁 ) )
9 1 3 matbas2 ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝐵m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) )
10 6 5 9 syl2anc ( 𝜑 → ( 𝐵m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) )
11 7 10 eleqtrrd ( 𝜑𝑋 ∈ ( 𝐵m ( 𝑁 × 𝑁 ) ) )
12 2 3 4 5 6 6 11 8 mvmulval ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑖𝑁 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) ) )