Metamath Proof Explorer


Theorem mavmulval

Description: Multiplication of a vector with a square matrix. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mavmulval.a
|- A = ( N Mat R )
mavmulval.m
|- .X. = ( R maVecMul <. N , N >. )
mavmulval.b
|- B = ( Base ` R )
mavmulval.t
|- .x. = ( .r ` R )
mavmulval.r
|- ( ph -> R e. V )
mavmulval.n
|- ( ph -> N e. Fin )
mavmulval.x
|- ( ph -> X e. ( Base ` A ) )
mavmulval.y
|- ( ph -> Y e. ( B ^m N ) )
Assertion mavmulval
|- ( ph -> ( X .X. Y ) = ( i e. N |-> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mavmulval.a
 |-  A = ( N Mat R )
2 mavmulval.m
 |-  .X. = ( R maVecMul <. N , N >. )
3 mavmulval.b
 |-  B = ( Base ` R )
4 mavmulval.t
 |-  .x. = ( .r ` R )
5 mavmulval.r
 |-  ( ph -> R e. V )
6 mavmulval.n
 |-  ( ph -> N e. Fin )
7 mavmulval.x
 |-  ( ph -> X e. ( Base ` A ) )
8 mavmulval.y
 |-  ( ph -> Y e. ( B ^m N ) )
9 1 3 matbas2
 |-  ( ( N e. Fin /\ R e. V ) -> ( B ^m ( N X. N ) ) = ( Base ` A ) )
10 6 5 9 syl2anc
 |-  ( ph -> ( B ^m ( N X. N ) ) = ( Base ` A ) )
11 7 10 eleqtrrd
 |-  ( ph -> X e. ( B ^m ( N X. N ) ) )
12 2 3 4 5 6 6 11 8 mvmulval
 |-  ( ph -> ( X .X. Y ) = ( i e. N |-> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) ) ) )