Description: Multiplication of a vector with a square matrix. (Contributed by AV, 23-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mavmulval.a | |- A = ( N Mat R ) |
|
| mavmulval.m | |- .X. = ( R maVecMul <. N , N >. ) |
||
| mavmulval.b | |- B = ( Base ` R ) |
||
| mavmulval.t | |- .x. = ( .r ` R ) |
||
| mavmulval.r | |- ( ph -> R e. V ) |
||
| mavmulval.n | |- ( ph -> N e. Fin ) |
||
| mavmulval.x | |- ( ph -> X e. ( Base ` A ) ) |
||
| mavmulval.y | |- ( ph -> Y e. ( B ^m N ) ) |
||
| Assertion | mavmulval | |- ( ph -> ( X .X. Y ) = ( i e. N |-> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mavmulval.a | |- A = ( N Mat R ) |
|
| 2 | mavmulval.m | |- .X. = ( R maVecMul <. N , N >. ) |
|
| 3 | mavmulval.b | |- B = ( Base ` R ) |
|
| 4 | mavmulval.t | |- .x. = ( .r ` R ) |
|
| 5 | mavmulval.r | |- ( ph -> R e. V ) |
|
| 6 | mavmulval.n | |- ( ph -> N e. Fin ) |
|
| 7 | mavmulval.x | |- ( ph -> X e. ( Base ` A ) ) |
|
| 8 | mavmulval.y | |- ( ph -> Y e. ( B ^m N ) ) |
|
| 9 | 1 3 | matbas2 | |- ( ( N e. Fin /\ R e. V ) -> ( B ^m ( N X. N ) ) = ( Base ` A ) ) |
| 10 | 6 5 9 | syl2anc | |- ( ph -> ( B ^m ( N X. N ) ) = ( Base ` A ) ) |
| 11 | 7 10 | eleqtrrd | |- ( ph -> X e. ( B ^m ( N X. N ) ) ) |
| 12 | 2 3 4 5 6 6 11 8 | mvmulval | |- ( ph -> ( X .X. Y ) = ( i e. N |-> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) ) ) ) |