Description: The domain of a measurable function is a subset of the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfdmssre | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf1 | ⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐹 ∈ MblFn → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 3 | elpmi2 | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → dom 𝐹 ⊆ ℝ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ ) |