Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Jarvin Udandy mdandyvrx5  
				
		 
		
			
		 
		Description:   Given the exclusivities set in the hypotheses, there exist a proof where
       ch, th, ta, et exclude ze, si accordingly.  (Contributed by Jarvin
       Udandy , 7-Sep-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mdandyvrx5.1 ⊢  ( 𝜑   ⊻  𝜁  )  
					
						mdandyvrx5.2 ⊢  ( 𝜓   ⊻  𝜎  )  
					
						mdandyvrx5.3 ⊢  ( 𝜒   ↔  𝜓  )  
					
						mdandyvrx5.4 ⊢  ( 𝜃   ↔  𝜑  )  
					
						mdandyvrx5.5 ⊢  ( 𝜏   ↔  𝜓  )  
					
						mdandyvrx5.6 ⊢  ( 𝜂   ↔  𝜑  )  
				
					Assertion 
					mdandyvrx5 ⊢   ( ( ( ( 𝜒   ⊻  𝜎  )  ∧  ( 𝜃   ⊻  𝜁  ) )  ∧  ( 𝜏   ⊻  𝜎  ) )  ∧  ( 𝜂   ⊻  𝜁  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mdandyvrx5.1 ⊢  ( 𝜑   ⊻  𝜁  )  
						
							2 
								
							 
							mdandyvrx5.2 ⊢  ( 𝜓   ⊻  𝜎  )  
						
							3 
								
							 
							mdandyvrx5.3 ⊢  ( 𝜒   ↔  𝜓  )  
						
							4 
								
							 
							mdandyvrx5.4 ⊢  ( 𝜃   ↔  𝜑  )  
						
							5 
								
							 
							mdandyvrx5.5 ⊢  ( 𝜏   ↔  𝜓  )  
						
							6 
								
							 
							mdandyvrx5.6 ⊢  ( 𝜂   ↔  𝜑  )  
						
							7 
								2  3 
							 
							axorbciffatcxorb ⊢  ( 𝜒   ⊻  𝜎  )  
						
							8 
								1  4 
							 
							axorbciffatcxorb ⊢  ( 𝜃   ⊻  𝜁  )  
						
							9 
								7  8 
							 
							pm3.2i ⊢  ( ( 𝜒   ⊻  𝜎  )  ∧  ( 𝜃   ⊻  𝜁  ) )  
						
							10 
								2  5 
							 
							axorbciffatcxorb ⊢  ( 𝜏   ⊻  𝜎  )  
						
							11 
								9  10 
							 
							pm3.2i ⊢  ( ( ( 𝜒   ⊻  𝜎  )  ∧  ( 𝜃   ⊻  𝜁  ) )  ∧  ( 𝜏   ⊻  𝜎  ) )  
						
							12 
								1  6 
							 
							axorbciffatcxorb ⊢  ( 𝜂   ⊻  𝜁  )  
						
							13 
								11  12 
							 
							pm3.2i ⊢  ( ( ( ( 𝜒   ⊻  𝜎  )  ∧  ( 𝜃   ⊻  𝜁  ) )  ∧  ( 𝜏   ⊻  𝜎  ) )  ∧  ( 𝜂   ⊻  𝜁  ) )