| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 2 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
| 3 |
|
dmdmd |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) 𝑀ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) 𝑀ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 5 |
|
ococ |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ) |
| 6 |
|
ococ |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 ) |
| 7 |
5 6
|
breqan12d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) 𝑀ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ↔ 𝐴 𝑀ℋ 𝐵 ) ) |
| 8 |
4 7
|
bitr2d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) ) |