Metamath Proof Explorer
Description: Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
mdoc1.1 |
⊢ 𝐴 ∈ Cℋ |
|
Assertion |
mdoc1i |
⊢ 𝐴 𝑀ℋ ( ⊥ ‘ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mdoc1.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
1
|
cmidi |
⊢ 𝐴 𝐶ℋ 𝐴 |
3 |
1 1 2
|
cmcm2ii |
⊢ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐴 ) |
4 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
5 |
1 4
|
cmmdi |
⊢ ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐴 ) → 𝐴 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) |
6 |
3 5
|
ax-mp |
⊢ 𝐴 𝑀ℋ ( ⊥ ‘ 𝐴 ) |