Metamath Proof Explorer
		
		
		
		Description:  Orthocomplements form a modular pair.  (Contributed by NM, 29-Apr-2006)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | mdoc1.1 | ⊢ 𝐴  ∈   Cℋ | 
				
					|  | Assertion | mdoc1i | ⊢  𝐴  𝑀ℋ  ( ⊥ ‘ 𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdoc1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 | 1 | cmidi | ⊢ 𝐴  𝐶ℋ  𝐴 | 
						
							| 3 | 1 1 2 | cmcm2ii | ⊢ 𝐴  𝐶ℋ  ( ⊥ ‘ 𝐴 ) | 
						
							| 4 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 5 | 1 4 | cmmdi | ⊢ ( 𝐴  𝐶ℋ  ( ⊥ ‘ 𝐴 )  →  𝐴  𝑀ℋ  ( ⊥ ‘ 𝐴 ) ) | 
						
							| 6 | 3 5 | ax-mp | ⊢ 𝐴  𝑀ℋ  ( ⊥ ‘ 𝐴 ) |