Metamath Proof Explorer


Theorem cmmdi

Description: Commuting subspaces form a modular pair. (Contributed by NM, 16-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion cmmdi ( 𝐴 𝐶 𝐵𝐴 𝑀 𝐵 )

Proof

Step Hyp Ref Expression
1 sumdmdi.1 𝐴C
2 sumdmdi.2 𝐵C
3 1 2 cmcm4i ( 𝐴 𝐶 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶 ( ⊥ ‘ 𝐵 ) )
4 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
5 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
6 4 5 osumcor2i ( ( ⊥ ‘ 𝐴 ) 𝐶 ( ⊥ ‘ 𝐵 ) → ( ( ⊥ ‘ 𝐴 ) + ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) )
7 3 6 sylbi ( 𝐴 𝐶 𝐵 → ( ( ⊥ ‘ 𝐴 ) + ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) )
8 4 5 sumdmdii ( ( ( ⊥ ‘ 𝐴 ) + ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) → ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) )
9 7 8 syl ( 𝐴 𝐶 𝐵 → ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) )
10 mddmd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ) )
11 1 2 10 mp2an ( 𝐴 𝑀 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) )
12 9 11 sylibr ( 𝐴 𝐶 𝐵𝐴 𝑀 𝐵 )