| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumdmdi.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | sumdmdi.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 | 1 2 | cmcm4i | ⊢ ( 𝐴  𝐶ℋ  𝐵  ↔  ( ⊥ ‘ 𝐴 )  𝐶ℋ  ( ⊥ ‘ 𝐵 ) ) | 
						
							| 4 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 5 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 )  ∈   Cℋ | 
						
							| 6 | 4 5 | osumcor2i | ⊢ ( ( ⊥ ‘ 𝐴 )  𝐶ℋ  ( ⊥ ‘ 𝐵 )  →  ( ( ⊥ ‘ 𝐴 )  +ℋ  ( ⊥ ‘ 𝐵 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) | 
						
							| 7 | 3 6 | sylbi | ⊢ ( 𝐴  𝐶ℋ  𝐵  →  ( ( ⊥ ‘ 𝐴 )  +ℋ  ( ⊥ ‘ 𝐵 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) | 
						
							| 8 | 4 5 | sumdmdii | ⊢ ( ( ( ⊥ ‘ 𝐴 )  +ℋ  ( ⊥ ‘ 𝐵 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  →  ( ⊥ ‘ 𝐴 )  𝑀ℋ*  ( ⊥ ‘ 𝐵 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐴  𝐶ℋ  𝐵  →  ( ⊥ ‘ 𝐴 )  𝑀ℋ*  ( ⊥ ‘ 𝐵 ) ) | 
						
							| 10 |  | mddmd | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  𝑀ℋ  𝐵  ↔  ( ⊥ ‘ 𝐴 )  𝑀ℋ*  ( ⊥ ‘ 𝐵 ) ) ) | 
						
							| 11 | 1 2 10 | mp2an | ⊢ ( 𝐴  𝑀ℋ  𝐵  ↔  ( ⊥ ‘ 𝐴 )  𝑀ℋ*  ( ⊥ ‘ 𝐵 ) ) | 
						
							| 12 | 9 11 | sylibr | ⊢ ( 𝐴  𝐶ℋ  𝐵  →  𝐴  𝑀ℋ  𝐵 ) |