| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumdmdi.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
sumdmdi.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1 2
|
cmcm4i |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |
| 4 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 5 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 6 |
4 5
|
osumcor2i |
⊢ ( ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) → ( ( ⊥ ‘ 𝐴 ) +ℋ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
| 7 |
3 6
|
sylbi |
⊢ ( 𝐴 𝐶ℋ 𝐵 → ( ( ⊥ ‘ 𝐴 ) +ℋ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
| 8 |
4 5
|
sumdmdii |
⊢ ( ( ( ⊥ ‘ 𝐴 ) +ℋ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) → ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐴 𝐶ℋ 𝐵 → ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) |
| 10 |
|
mddmd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) ) |
| 11 |
1 2 10
|
mp2an |
⊢ ( 𝐴 𝑀ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) |
| 12 |
9 11
|
sylibr |
⊢ ( 𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵 ) |