| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumdmdi.1 |
|- A e. CH |
| 2 |
|
sumdmdi.2 |
|- B e. CH |
| 3 |
1 2
|
cmcm4i |
|- ( A C_H B <-> ( _|_ ` A ) C_H ( _|_ ` B ) ) |
| 4 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 5 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 6 |
4 5
|
osumcor2i |
|- ( ( _|_ ` A ) C_H ( _|_ ` B ) -> ( ( _|_ ` A ) +H ( _|_ ` B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
| 7 |
3 6
|
sylbi |
|- ( A C_H B -> ( ( _|_ ` A ) +H ( _|_ ` B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
| 8 |
4 5
|
sumdmdii |
|- ( ( ( _|_ ` A ) +H ( _|_ ` B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) -> ( _|_ ` A ) MH* ( _|_ ` B ) ) |
| 9 |
7 8
|
syl |
|- ( A C_H B -> ( _|_ ` A ) MH* ( _|_ ` B ) ) |
| 10 |
|
mddmd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> ( _|_ ` A ) MH* ( _|_ ` B ) ) ) |
| 11 |
1 2 10
|
mp2an |
|- ( A MH B <-> ( _|_ ` A ) MH* ( _|_ ` B ) ) |
| 12 |
9 11
|
sylibr |
|- ( A C_H B -> A MH B ) |