Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
|- A e. CH |
2 |
|
sumdmdi.2 |
|- B e. CH |
3 |
1 2
|
cmcm4i |
|- ( A C_H B <-> ( _|_ ` A ) C_H ( _|_ ` B ) ) |
4 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
5 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
6 |
4 5
|
osumcor2i |
|- ( ( _|_ ` A ) C_H ( _|_ ` B ) -> ( ( _|_ ` A ) +H ( _|_ ` B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
7 |
3 6
|
sylbi |
|- ( A C_H B -> ( ( _|_ ` A ) +H ( _|_ ` B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
8 |
4 5
|
sumdmdii |
|- ( ( ( _|_ ` A ) +H ( _|_ ` B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) -> ( _|_ ` A ) MH* ( _|_ ` B ) ) |
9 |
7 8
|
syl |
|- ( A C_H B -> ( _|_ ` A ) MH* ( _|_ ` B ) ) |
10 |
|
mddmd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> ( _|_ ` A ) MH* ( _|_ ` B ) ) ) |
11 |
1 2 10
|
mp2an |
|- ( A MH B <-> ( _|_ ` A ) MH* ( _|_ ` B ) ) |
12 |
9 11
|
sylibr |
|- ( A C_H B -> A MH B ) |