| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumdmdi.1 |  |-  A e. CH | 
						
							| 2 |  | sumdmdi.2 |  |-  B e. CH | 
						
							| 3 | 1 2 | cmcm4i |  |-  ( A C_H B <-> ( _|_ ` A ) C_H ( _|_ ` B ) ) | 
						
							| 4 | 1 | choccli |  |-  ( _|_ ` A ) e. CH | 
						
							| 5 | 2 | choccli |  |-  ( _|_ ` B ) e. CH | 
						
							| 6 | 4 5 | osumcor2i |  |-  ( ( _|_ ` A ) C_H ( _|_ ` B ) -> ( ( _|_ ` A ) +H ( _|_ ` B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) | 
						
							| 7 | 3 6 | sylbi |  |-  ( A C_H B -> ( ( _|_ ` A ) +H ( _|_ ` B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) | 
						
							| 8 | 4 5 | sumdmdii |  |-  ( ( ( _|_ ` A ) +H ( _|_ ` B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) -> ( _|_ ` A ) MH* ( _|_ ` B ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( A C_H B -> ( _|_ ` A ) MH* ( _|_ ` B ) ) | 
						
							| 10 |  | mddmd |  |-  ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> ( _|_ ` A ) MH* ( _|_ ` B ) ) ) | 
						
							| 11 | 1 2 10 | mp2an |  |-  ( A MH B <-> ( _|_ ` A ) MH* ( _|_ ` B ) ) | 
						
							| 12 | 9 11 | sylibr |  |-  ( A C_H B -> A MH B ) |