Metamath Proof Explorer


Theorem cmdmdi

Description: Commuting subspaces form a dual modular pair. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1
|- A e. CH
sumdmdi.2
|- B e. CH
Assertion cmdmdi
|- ( A C_H B -> A MH* B )

Proof

Step Hyp Ref Expression
1 sumdmdi.1
 |-  A e. CH
2 sumdmdi.2
 |-  B e. CH
3 1 choccli
 |-  ( _|_ ` A ) e. CH
4 2 choccli
 |-  ( _|_ ` B ) e. CH
5 3 4 cmmdi
 |-  ( ( _|_ ` A ) C_H ( _|_ ` B ) -> ( _|_ ` A ) MH ( _|_ ` B ) )
6 1 2 cmcm4i
 |-  ( A C_H B <-> ( _|_ ` A ) C_H ( _|_ ` B ) )
7 dmdmd
 |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) ) )
8 1 2 7 mp2an
 |-  ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) )
9 5 6 8 3imtr4i
 |-  ( A C_H B -> A MH* B )