| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
|- ( y = ( _|_ ` x ) -> ( y C_ ( _|_ ` B ) <-> ( _|_ ` x ) C_ ( _|_ ` B ) ) ) |
| 2 |
|
oveq1 |
|- ( y = ( _|_ ` x ) -> ( y vH ( _|_ ` A ) ) = ( ( _|_ ` x ) vH ( _|_ ` A ) ) ) |
| 3 |
2
|
ineq1d |
|- ( y = ( _|_ ` x ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) |
| 4 |
|
oveq1 |
|- ( y = ( _|_ ` x ) -> ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) |
| 5 |
3 4
|
eqeq12d |
|- ( y = ( _|_ ` x ) -> ( ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) <-> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) |
| 6 |
1 5
|
imbi12d |
|- ( y = ( _|_ ` x ) -> ( ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) <-> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 7 |
6
|
rspccv |
|- ( A. y e. CH ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) -> ( ( _|_ ` x ) e. CH -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 8 |
|
choccl |
|- ( x e. CH -> ( _|_ ` x ) e. CH ) |
| 9 |
8
|
imim1i |
|- ( ( ( _|_ ` x ) e. CH -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) -> ( x e. CH -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 10 |
9
|
com12 |
|- ( x e. CH -> ( ( ( _|_ ` x ) e. CH -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 11 |
10
|
adantl |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( ( _|_ ` x ) e. CH -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 12 |
|
chsscon3 |
|- ( ( B e. CH /\ x e. CH ) -> ( B C_ x <-> ( _|_ ` x ) C_ ( _|_ ` B ) ) ) |
| 13 |
12
|
biimpd |
|- ( ( B e. CH /\ x e. CH ) -> ( B C_ x -> ( _|_ ` x ) C_ ( _|_ ` B ) ) ) |
| 14 |
13
|
adantll |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( _|_ ` x ) C_ ( _|_ ` B ) ) ) |
| 15 |
|
fveq2 |
|- ( ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) -> ( _|_ ` ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( _|_ ` ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) |
| 16 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
| 17 |
|
chjcl |
|- ( ( ( _|_ ` x ) e. CH /\ ( _|_ ` A ) e. CH ) -> ( ( _|_ ` x ) vH ( _|_ ` A ) ) e. CH ) |
| 18 |
8 16 17
|
syl2an |
|- ( ( x e. CH /\ A e. CH ) -> ( ( _|_ ` x ) vH ( _|_ ` A ) ) e. CH ) |
| 19 |
|
chdmm3 |
|- ( ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) e. CH /\ B e. CH ) -> ( _|_ ` ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( ( _|_ ` ( ( _|_ ` x ) vH ( _|_ ` A ) ) ) vH B ) ) |
| 20 |
18 19
|
sylan |
|- ( ( ( x e. CH /\ A e. CH ) /\ B e. CH ) -> ( _|_ ` ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( ( _|_ ` ( ( _|_ ` x ) vH ( _|_ ` A ) ) ) vH B ) ) |
| 21 |
|
chdmj4 |
|- ( ( x e. CH /\ A e. CH ) -> ( _|_ ` ( ( _|_ ` x ) vH ( _|_ ` A ) ) ) = ( x i^i A ) ) |
| 22 |
21
|
adantr |
|- ( ( ( x e. CH /\ A e. CH ) /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` x ) vH ( _|_ ` A ) ) ) = ( x i^i A ) ) |
| 23 |
22
|
oveq1d |
|- ( ( ( x e. CH /\ A e. CH ) /\ B e. CH ) -> ( ( _|_ ` ( ( _|_ ` x ) vH ( _|_ ` A ) ) ) vH B ) = ( ( x i^i A ) vH B ) ) |
| 24 |
20 23
|
eqtrd |
|- ( ( ( x e. CH /\ A e. CH ) /\ B e. CH ) -> ( _|_ ` ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( ( x i^i A ) vH B ) ) |
| 25 |
24
|
anasss |
|- ( ( x e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( _|_ ` ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( ( x i^i A ) vH B ) ) |
| 26 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
| 27 |
|
chincl |
|- ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH ) |
| 28 |
16 26 27
|
syl2an |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH ) |
| 29 |
|
chdmj2 |
|- ( ( x e. CH /\ ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH ) -> ( _|_ ` ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( x i^i ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) |
| 30 |
28 29
|
sylan2 |
|- ( ( x e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( _|_ ` ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( x i^i ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) |
| 31 |
|
chdmm4 |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH B ) ) |
| 32 |
31
|
adantl |
|- ( ( x e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH B ) ) |
| 33 |
32
|
ineq2d |
|- ( ( x e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( x i^i ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( x i^i ( A vH B ) ) ) |
| 34 |
30 33
|
eqtrd |
|- ( ( x e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( _|_ ` ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( x i^i ( A vH B ) ) ) |
| 35 |
25 34
|
eqeq12d |
|- ( ( x e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( ( _|_ ` ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( _|_ ` ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) <-> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) |
| 36 |
35
|
ancoms |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( _|_ ` ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( _|_ ` ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) <-> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) |
| 37 |
15 36
|
imbitrid |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) |
| 38 |
14 37
|
imim12d |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) -> ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) |
| 39 |
11 38
|
syld |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( ( _|_ ` x ) e. CH -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) -> ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) |
| 40 |
39
|
ex |
|- ( ( A e. CH /\ B e. CH ) -> ( x e. CH -> ( ( ( _|_ ` x ) e. CH -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) -> ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) ) |
| 41 |
40
|
com23 |
|- ( ( A e. CH /\ B e. CH ) -> ( ( ( _|_ ` x ) e. CH -> ( ( _|_ ` x ) C_ ( _|_ ` B ) -> ( ( ( _|_ ` x ) vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( ( _|_ ` x ) vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) -> ( x e. CH -> ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) ) |
| 42 |
7 41
|
syl5 |
|- ( ( A e. CH /\ B e. CH ) -> ( A. y e. CH ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) -> ( x e. CH -> ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) ) |
| 43 |
42
|
ralrimdv |
|- ( ( A e. CH /\ B e. CH ) -> ( A. y e. CH ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) -> A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) |
| 44 |
|
sseq2 |
|- ( x = ( _|_ ` y ) -> ( B C_ x <-> B C_ ( _|_ ` y ) ) ) |
| 45 |
|
ineq1 |
|- ( x = ( _|_ ` y ) -> ( x i^i A ) = ( ( _|_ ` y ) i^i A ) ) |
| 46 |
45
|
oveq1d |
|- ( x = ( _|_ ` y ) -> ( ( x i^i A ) vH B ) = ( ( ( _|_ ` y ) i^i A ) vH B ) ) |
| 47 |
|
ineq1 |
|- ( x = ( _|_ ` y ) -> ( x i^i ( A vH B ) ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) |
| 48 |
46 47
|
eqeq12d |
|- ( x = ( _|_ ` y ) -> ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) |
| 49 |
44 48
|
imbi12d |
|- ( x = ( _|_ ` y ) -> ( ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) <-> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) ) |
| 50 |
49
|
rspccv |
|- ( A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) -> ( ( _|_ ` y ) e. CH -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) ) |
| 51 |
|
choccl |
|- ( y e. CH -> ( _|_ ` y ) e. CH ) |
| 52 |
51
|
imim1i |
|- ( ( ( _|_ ` y ) e. CH -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) -> ( y e. CH -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) ) |
| 53 |
52
|
com12 |
|- ( y e. CH -> ( ( ( _|_ ` y ) e. CH -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) ) |
| 54 |
53
|
adantl |
|- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( ( ( _|_ ` y ) e. CH -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) ) |
| 55 |
|
chsscon2 |
|- ( ( B e. CH /\ y e. CH ) -> ( B C_ ( _|_ ` y ) <-> y C_ ( _|_ ` B ) ) ) |
| 56 |
55
|
biimprd |
|- ( ( B e. CH /\ y e. CH ) -> ( y C_ ( _|_ ` B ) -> B C_ ( _|_ ` y ) ) ) |
| 57 |
56
|
adantll |
|- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( y C_ ( _|_ ` B ) -> B C_ ( _|_ ` y ) ) ) |
| 58 |
|
fveq2 |
|- ( ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) -> ( _|_ ` ( ( ( _|_ ` y ) i^i A ) vH B ) ) = ( _|_ ` ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) |
| 59 |
|
chincl |
|- ( ( ( _|_ ` y ) e. CH /\ A e. CH ) -> ( ( _|_ ` y ) i^i A ) e. CH ) |
| 60 |
51 59
|
sylan |
|- ( ( y e. CH /\ A e. CH ) -> ( ( _|_ ` y ) i^i A ) e. CH ) |
| 61 |
|
chdmj1 |
|- ( ( ( ( _|_ ` y ) i^i A ) e. CH /\ B e. CH ) -> ( _|_ ` ( ( ( _|_ ` y ) i^i A ) vH B ) ) = ( ( _|_ ` ( ( _|_ ` y ) i^i A ) ) i^i ( _|_ ` B ) ) ) |
| 62 |
60 61
|
sylan |
|- ( ( ( y e. CH /\ A e. CH ) /\ B e. CH ) -> ( _|_ ` ( ( ( _|_ ` y ) i^i A ) vH B ) ) = ( ( _|_ ` ( ( _|_ ` y ) i^i A ) ) i^i ( _|_ ` B ) ) ) |
| 63 |
|
chdmm2 |
|- ( ( y e. CH /\ A e. CH ) -> ( _|_ ` ( ( _|_ ` y ) i^i A ) ) = ( y vH ( _|_ ` A ) ) ) |
| 64 |
63
|
adantr |
|- ( ( ( y e. CH /\ A e. CH ) /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` y ) i^i A ) ) = ( y vH ( _|_ ` A ) ) ) |
| 65 |
64
|
ineq1d |
|- ( ( ( y e. CH /\ A e. CH ) /\ B e. CH ) -> ( ( _|_ ` ( ( _|_ ` y ) i^i A ) ) i^i ( _|_ ` B ) ) = ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) |
| 66 |
62 65
|
eqtrd |
|- ( ( ( y e. CH /\ A e. CH ) /\ B e. CH ) -> ( _|_ ` ( ( ( _|_ ` y ) i^i A ) vH B ) ) = ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) |
| 67 |
66
|
anasss |
|- ( ( y e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( _|_ ` ( ( ( _|_ ` y ) i^i A ) vH B ) ) = ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) |
| 68 |
|
chjcl |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH ) |
| 69 |
|
chdmm2 |
|- ( ( y e. CH /\ ( A vH B ) e. CH ) -> ( _|_ ` ( ( _|_ ` y ) i^i ( A vH B ) ) ) = ( y vH ( _|_ ` ( A vH B ) ) ) ) |
| 70 |
68 69
|
sylan2 |
|- ( ( y e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( _|_ ` ( ( _|_ ` y ) i^i ( A vH B ) ) ) = ( y vH ( _|_ ` ( A vH B ) ) ) ) |
| 71 |
|
chdmj1 |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) |
| 72 |
71
|
adantl |
|- ( ( y e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) |
| 73 |
72
|
oveq2d |
|- ( ( y e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( y vH ( _|_ ` ( A vH B ) ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) |
| 74 |
70 73
|
eqtrd |
|- ( ( y e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( _|_ ` ( ( _|_ ` y ) i^i ( A vH B ) ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) |
| 75 |
67 74
|
eqeq12d |
|- ( ( y e. CH /\ ( A e. CH /\ B e. CH ) ) -> ( ( _|_ ` ( ( ( _|_ ` y ) i^i A ) vH B ) ) = ( _|_ ` ( ( _|_ ` y ) i^i ( A vH B ) ) ) <-> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) |
| 76 |
75
|
ancoms |
|- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( ( _|_ ` ( ( ( _|_ ` y ) i^i A ) vH B ) ) = ( _|_ ` ( ( _|_ ` y ) i^i ( A vH B ) ) ) <-> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) |
| 77 |
58 76
|
imbitrid |
|- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) |
| 78 |
57 77
|
imim12d |
|- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) -> ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 79 |
54 78
|
syld |
|- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( ( ( _|_ ` y ) e. CH -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) -> ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 80 |
79
|
ex |
|- ( ( A e. CH /\ B e. CH ) -> ( y e. CH -> ( ( ( _|_ ` y ) e. CH -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) -> ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) ) |
| 81 |
80
|
com23 |
|- ( ( A e. CH /\ B e. CH ) -> ( ( ( _|_ ` y ) e. CH -> ( B C_ ( _|_ ` y ) -> ( ( ( _|_ ` y ) i^i A ) vH B ) = ( ( _|_ ` y ) i^i ( A vH B ) ) ) ) -> ( y e. CH -> ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) ) |
| 82 |
50 81
|
syl5 |
|- ( ( A e. CH /\ B e. CH ) -> ( A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) -> ( y e. CH -> ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) ) |
| 83 |
82
|
ralrimdv |
|- ( ( A e. CH /\ B e. CH ) -> ( A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) -> A. y e. CH ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 84 |
43 83
|
impbid |
|- ( ( A e. CH /\ B e. CH ) -> ( A. y e. CH ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) <-> A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) |
| 85 |
|
mdbr |
|- ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> A. y e. CH ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 86 |
16 26 85
|
syl2an |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> A. y e. CH ( y C_ ( _|_ ` B ) -> ( ( y vH ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( y vH ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) ) ) |
| 87 |
|
dmdbr |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) |
| 88 |
84 86 87
|
3bitr4rd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) ) ) |