Metamath Proof Explorer


Theorem dmdmd

Description: The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of MaedaMaeda p. 130. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion dmdmd ACBCA𝑀*BA𝑀B

Proof

Step Hyp Ref Expression
1 sseq1 y=xyBxB
2 oveq1 y=xyA=xA
3 2 ineq1d y=xyAB=xAB
4 oveq1 y=xyAB=xAB
5 3 4 eqeq12d y=xyAB=yABxAB=xAB
6 1 5 imbi12d y=xyByAB=yABxBxAB=xAB
7 6 rspccv yCyByAB=yABxCxBxAB=xAB
8 choccl xCxC
9 8 imim1i xCxBxAB=xABxCxBxAB=xAB
10 9 com12 xCxCxBxAB=xABxBxAB=xAB
11 10 adantl ACBCxCxCxBxAB=xABxBxAB=xAB
12 chsscon3 BCxCBxxB
13 12 biimpd BCxCBxxB
14 13 adantll ACBCxCBxxB
15 fveq2 xAB=xABxAB=xAB
16 choccl ACAC
17 chjcl xCACxAC
18 8 16 17 syl2an xCACxAC
19 chdmm3 xACBCxAB=xAB
20 18 19 sylan xCACBCxAB=xAB
21 chdmj4 xCACxA=xA
22 21 adantr xCACBCxA=xA
23 22 oveq1d xCACBCxAB=xAB
24 20 23 eqtrd xCACBCxAB=xAB
25 24 anasss xCACBCxAB=xAB
26 choccl BCBC
27 chincl ACBCABC
28 16 26 27 syl2an ACBCABC
29 chdmj2 xCABCxAB=xAB
30 28 29 sylan2 xCACBCxAB=xAB
31 chdmm4 ACBCAB=AB
32 31 adantl xCACBCAB=AB
33 32 ineq2d xCACBCxAB=xAB
34 30 33 eqtrd xCACBCxAB=xAB
35 25 34 eqeq12d xCACBCxAB=xABxAB=xAB
36 35 ancoms ACBCxCxAB=xABxAB=xAB
37 15 36 imbitrid ACBCxCxAB=xABxAB=xAB
38 14 37 imim12d ACBCxCxBxAB=xABBxxAB=xAB
39 11 38 syld ACBCxCxCxBxAB=xABBxxAB=xAB
40 39 ex ACBCxCxCxBxAB=xABBxxAB=xAB
41 40 com23 ACBCxCxBxAB=xABxCBxxAB=xAB
42 7 41 syl5 ACBCyCyByAB=yABxCBxxAB=xAB
43 42 ralrimdv ACBCyCyByAB=yABxCBxxAB=xAB
44 sseq2 x=yBxBy
45 ineq1 x=yxA=yA
46 45 oveq1d x=yxAB=yAB
47 ineq1 x=yxAB=yAB
48 46 47 eqeq12d x=yxAB=xAByAB=yAB
49 44 48 imbi12d x=yBxxAB=xABByyAB=yAB
50 49 rspccv xCBxxAB=xAByCByyAB=yAB
51 choccl yCyC
52 51 imim1i yCByyAB=yAByCByyAB=yAB
53 52 com12 yCyCByyAB=yABByyAB=yAB
54 53 adantl ACBCyCyCByyAB=yABByyAB=yAB
55 chsscon2 BCyCByyB
56 55 biimprd BCyCyBBy
57 56 adantll ACBCyCyBBy
58 fveq2 yAB=yAByAB=yAB
59 chincl yCACyAC
60 51 59 sylan yCACyAC
61 chdmj1 yACBCyAB=yAB
62 60 61 sylan yCACBCyAB=yAB
63 chdmm2 yCACyA=yA
64 63 adantr yCACBCyA=yA
65 64 ineq1d yCACBCyAB=yAB
66 62 65 eqtrd yCACBCyAB=yAB
67 66 anasss yCACBCyAB=yAB
68 chjcl ACBCABC
69 chdmm2 yCABCyAB=yAB
70 68 69 sylan2 yCACBCyAB=yAB
71 chdmj1 ACBCAB=AB
72 71 adantl yCACBCAB=AB
73 72 oveq2d yCACBCyAB=yAB
74 70 73 eqtrd yCACBCyAB=yAB
75 67 74 eqeq12d yCACBCyAB=yAByAB=yAB
76 75 ancoms ACBCyCyAB=yAByAB=yAB
77 58 76 imbitrid ACBCyCyAB=yAByAB=yAB
78 57 77 imim12d ACBCyCByyAB=yAByByAB=yAB
79 54 78 syld ACBCyCyCByyAB=yAByByAB=yAB
80 79 ex ACBCyCyCByyAB=yAByByAB=yAB
81 80 com23 ACBCyCByyAB=yAByCyByAB=yAB
82 50 81 syl5 ACBCxCBxxAB=xAByCyByAB=yAB
83 82 ralrimdv ACBCxCBxxAB=xAByCyByAB=yAB
84 43 83 impbid ACBCyCyByAB=yABxCBxxAB=xAB
85 mdbr ACBCA𝑀ByCyByAB=yAB
86 16 26 85 syl2an ACBCA𝑀ByCyByAB=yAB
87 dmdbr ACBCA𝑀*BxCBxxAB=xAB
88 84 86 87 3bitr4rd ACBCA𝑀*BA𝑀B