Metamath Proof Explorer


Definition df-dmd

Description: Define the dual modular pair relation (on the Hilbert lattice). Definition 1.1 of MaedaMaeda p. 1, who use the notation (x,y)M* for "the ordered pair is a dual modular pair." See dmdbr for membership relation. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion df-dmd 𝑀*=xy|xCyCzCyzzxy=zxy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdmd class𝑀*
1 vx setvarx
2 vy setvary
3 1 cv setvarx
4 cch classC
5 3 4 wcel wffxC
6 2 cv setvary
7 6 4 wcel wffyC
8 5 7 wa wffxCyC
9 vz setvarz
10 9 cv setvarz
11 6 10 wss wffyz
12 10 3 cin classzx
13 chj class
14 12 6 13 co classzxy
15 3 6 13 co classxy
16 10 15 cin classzxy
17 14 16 wceq wffzxy=zxy
18 11 17 wi wffyzzxy=zxy
19 18 9 4 wral wffzCyzzxy=zxy
20 8 19 wa wffxCyCzCyzzxy=zxy
21 20 1 2 copab classxy|xCyCzCyzzxy=zxy
22 0 21 wceq wff𝑀*=xy|xCyCzCyzzxy=zxy