Metamath Proof Explorer


Theorem dmdbr

Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion dmdbr ACBCA𝑀*BxCBxxAB=xAB

Proof

Step Hyp Ref Expression
1 eleq1 y=AyCAC
2 1 anbi1d y=AyCzCACzC
3 ineq2 y=Axy=xA
4 3 oveq1d y=Axyz=xAz
5 oveq1 y=Ayz=Az
6 5 ineq2d y=Axyz=xAz
7 4 6 eqeq12d y=Axyz=xyzxAz=xAz
8 7 imbi2d y=Azxxyz=xyzzxxAz=xAz
9 8 ralbidv y=AxCzxxyz=xyzxCzxxAz=xAz
10 2 9 anbi12d y=AyCzCxCzxxyz=xyzACzCxCzxxAz=xAz
11 eleq1 z=BzCBC
12 11 anbi2d z=BACzCACBC
13 sseq1 z=BzxBx
14 oveq2 z=BxAz=xAB
15 oveq2 z=BAz=AB
16 15 ineq2d z=BxAz=xAB
17 14 16 eqeq12d z=BxAz=xAzxAB=xAB
18 13 17 imbi12d z=BzxxAz=xAzBxxAB=xAB
19 18 ralbidv z=BxCzxxAz=xAzxCBxxAB=xAB
20 12 19 anbi12d z=BACzCxCzxxAz=xAzACBCxCBxxAB=xAB
21 df-dmd 𝑀*=yz|yCzCxCzxxyz=xyz
22 10 20 21 brabg ACBCA𝑀*BACBCxCBxxAB=xAB
23 22 bianabs ACBCA𝑀*BxCBxxAB=xAB