Metamath Proof Explorer


Theorem cmdmdi

Description: Commuting subspaces form a dual modular pair. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion cmdmdi ( 𝐴 𝐶 𝐵𝐴 𝑀* 𝐵 )

Proof

Step Hyp Ref Expression
1 sumdmdi.1 𝐴C
2 sumdmdi.2 𝐵C
3 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
4 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
5 3 4 cmmdi ( ( ⊥ ‘ 𝐴 ) 𝐶 ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) )
6 1 2 cmcm4i ( 𝐴 𝐶 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶 ( ⊥ ‘ 𝐵 ) )
7 dmdmd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ) )
8 1 2 7 mp2an ( 𝐴 𝑀* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) )
9 5 6 8 3imtr4i ( 𝐴 𝐶 𝐵𝐴 𝑀* 𝐵 )