Description: Commuting subspaces form a dual modular pair. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumdmdi.1 | ⊢ 𝐴 ∈ Cℋ | |
| sumdmdi.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | cmdmdi | ⊢ ( 𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ* 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumdmdi.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | sumdmdi.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 4 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 5 | 3 4 | cmmdi | ⊢ ( ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) |
| 6 | 1 2 | cmcm4i | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |
| 7 | dmdmd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) ) | |
| 8 | 1 2 7 | mp2an | ⊢ ( 𝐴 𝑀ℋ* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) |
| 9 | 5 6 8 | 3imtr4i | ⊢ ( 𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ* 𝐵 ) |