Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
sumdmdi.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
elin |
⊢ ( 𝑦 ∈ ( ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) ↔ ( 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 ∈ 𝐴 ) ) |
4 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
5 |
|
spansnsh |
⊢ ( 𝐶 ∈ ℋ → ( span ‘ { 𝐶 } ) ∈ Sℋ ) |
6 |
|
shsel |
⊢ ( ( 𝐵 ∈ Sℋ ∧ ( span ‘ { 𝐶 } ) ∈ Sℋ ) → ( 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( span ‘ { 𝐶 } ) 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
7 |
4 5 6
|
sylancr |
⊢ ( 𝐶 ∈ ℋ → ( 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( span ‘ { 𝐶 } ) 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
8 |
1
|
cheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
9 |
2
|
cheli |
⊢ ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ℋ ) |
10 |
|
elspansncl |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) → 𝑤 ∈ ℋ ) |
11 |
|
hvsubadd |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑦 −ℎ 𝑧 ) = 𝑤 ↔ ( 𝑧 +ℎ 𝑤 ) = 𝑦 ) ) |
12 |
|
eqcom |
⊢ ( ( 𝑧 +ℎ 𝑤 ) = 𝑦 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) |
13 |
11 12
|
bitrdi |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑦 −ℎ 𝑧 ) = 𝑤 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
14 |
8 9 10 13
|
syl3an |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ) → ( ( 𝑦 −ℎ 𝑧 ) = 𝑤 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
15 |
14
|
3expa |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ) → ( ( 𝑦 −ℎ 𝑧 ) = 𝑤 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
16 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
17 |
16 4
|
shsvsi |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 −ℎ 𝑧 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
18 |
|
eleq1 |
⊢ ( ( 𝑦 −ℎ 𝑧 ) = 𝑤 → ( ( 𝑦 −ℎ 𝑧 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
19 |
17 18
|
syl5ibcom |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑦 −ℎ 𝑧 ) = 𝑤 → 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ) → ( ( 𝑦 −ℎ 𝑧 ) = 𝑤 → 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
21 |
15 20
|
sylbird |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ) → ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) → 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
22 |
21
|
exp32 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐶 ∈ ℋ → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) → 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) ) |
23 |
22
|
com4r |
⊢ ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐶 ∈ ℋ → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) ) |
24 |
23
|
imp31 |
⊢ ( ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝐶 ∈ ℋ ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
25 |
24
|
adantrr |
⊢ ( ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
26 |
16 4
|
shscli |
⊢ ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ |
27 |
|
elspansn5 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ → ( ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ∧ ( 𝑤 ∈ ( span ‘ { 𝐶 } ) ∧ 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → 𝑤 = 0ℎ ) ) |
28 |
26 27
|
ax-mp |
⊢ ( ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ∧ ( 𝑤 ∈ ( span ‘ { 𝐶 } ) ∧ 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → 𝑤 = 0ℎ ) |
29 |
28
|
exp32 |
⊢ ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) → 𝑤 = 0ℎ ) ) ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑤 ∈ ( 𝐴 +ℋ 𝐵 ) → 𝑤 = 0ℎ ) ) ) |
31 |
25 30
|
mpdd |
⊢ ( ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑤 = 0ℎ ) ) |
32 |
|
oveq2 |
⊢ ( 𝑤 = 0ℎ → ( 𝑧 +ℎ 𝑤 ) = ( 𝑧 +ℎ 0ℎ ) ) |
33 |
|
ax-hvaddid |
⊢ ( 𝑧 ∈ ℋ → ( 𝑧 +ℎ 0ℎ ) = 𝑧 ) |
34 |
32 33
|
sylan9eqr |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑤 = 0ℎ ) → ( 𝑧 +ℎ 𝑤 ) = 𝑧 ) |
35 |
9 34
|
sylan |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 = 0ℎ ) → ( 𝑧 +ℎ 𝑤 ) = 𝑧 ) |
36 |
35
|
eqeq2d |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 = 0ℎ ) → ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ↔ 𝑦 = 𝑧 ) ) |
37 |
36
|
adantll |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑤 = 0ℎ ) → ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ↔ 𝑦 = 𝑧 ) ) |
38 |
37
|
biimpac |
⊢ ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑤 = 0ℎ ) ) → 𝑦 = 𝑧 ) |
39 |
|
eleq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
40 |
39
|
biimparc |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑦 = 𝑧 ) → 𝑦 ∈ 𝐵 ) |
41 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) |
42 |
41
|
biimpri |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) |
43 |
42
|
ancoms |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) |
44 |
40 43
|
sylan2 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 = 𝑧 ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) |
45 |
44
|
expr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 = 𝑧 → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) |
46 |
45
|
ad2antrl |
⊢ ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑤 = 0ℎ ) ) → ( 𝑦 = 𝑧 → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) |
47 |
38 46
|
mpd |
⊢ ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑤 = 0ℎ ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) |
48 |
47
|
expr |
⊢ ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑤 = 0ℎ → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) |
49 |
48
|
a1d |
⊢ ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑤 = 0ℎ → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑤 = 0ℎ → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) |
51 |
31 50
|
mpdd |
⊢ ( ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) |
52 |
51
|
ex |
⊢ ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) |
53 |
52
|
com23 |
⊢ ( ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) |
54 |
53
|
exp32 |
⊢ ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ 𝐵 → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) ) ) |
55 |
54
|
com4l |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ 𝐵 → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) ) ) |
56 |
55
|
imp4c |
⊢ ( 𝑦 ∈ 𝐴 → ( ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) |
57 |
56
|
exp4a |
⊢ ( 𝑦 ∈ 𝐴 → ( ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) → ( 𝐶 ∈ ℋ → ( ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
58 |
57
|
com23 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝐶 ∈ ℋ → ( ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) → ( ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
59 |
58
|
com4l |
⊢ ( 𝐶 ∈ ℋ → ( ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) → ( ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
60 |
59
|
expd |
⊢ ( 𝐶 ∈ ℋ → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) → ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ( ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) ) ) |
61 |
60
|
rexlimdvv |
⊢ ( 𝐶 ∈ ℋ → ( ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( span ‘ { 𝐶 } ) 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ( ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
62 |
7 61
|
sylbid |
⊢ ( 𝐶 ∈ ℋ → ( 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) → ( ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
63 |
62
|
com23 |
⊢ ( 𝐶 ∈ ℋ → ( ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
64 |
63
|
imp4b |
⊢ ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( ( 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) |
65 |
3 64
|
syl5bi |
⊢ ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝑦 ∈ ( ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) → 𝑦 ∈ ( 𝐵 ∩ 𝐴 ) ) ) |
66 |
65
|
ssrdv |
⊢ ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) ⊆ ( 𝐵 ∩ 𝐴 ) ) |
67 |
|
shsub1 |
⊢ ( ( 𝐵 ∈ Sℋ ∧ ( span ‘ { 𝐶 } ) ∈ Sℋ ) → 𝐵 ⊆ ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ) |
68 |
4 5 67
|
sylancr |
⊢ ( 𝐶 ∈ ℋ → 𝐵 ⊆ ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ) |
69 |
68
|
ssrind |
⊢ ( 𝐶 ∈ ℋ → ( 𝐵 ∩ 𝐴 ) ⊆ ( ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝐵 ∩ 𝐴 ) ⊆ ( ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) ) |
71 |
66 70
|
eqssd |
⊢ ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( ( 𝐵 +ℋ ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) = ( 𝐵 ∩ 𝐴 ) ) |