Metamath Proof Explorer


Theorem sumdmdlem

Description: Lemma for sumdmdi . The span of vector C not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion sumdmdlem ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → ( ( 𝐵 + ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) = ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 sumdmdi.1 𝐴C
2 sumdmdi.2 𝐵C
3 elin ( 𝑦 ∈ ( ( 𝐵 + ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) ↔ ( 𝑦 ∈ ( 𝐵 + ( span ‘ { 𝐶 } ) ) ∧ 𝑦𝐴 ) )
4 2 chshii 𝐵S
5 spansnsh ( 𝐶 ∈ ℋ → ( span ‘ { 𝐶 } ) ∈ S )
6 shsel ( ( 𝐵S ∧ ( span ‘ { 𝐶 } ) ∈ S ) → ( 𝑦 ∈ ( 𝐵 + ( span ‘ { 𝐶 } ) ) ↔ ∃ 𝑧𝐵𝑤 ∈ ( span ‘ { 𝐶 } ) 𝑦 = ( 𝑧 + 𝑤 ) ) )
7 4 5 6 sylancr ( 𝐶 ∈ ℋ → ( 𝑦 ∈ ( 𝐵 + ( span ‘ { 𝐶 } ) ) ↔ ∃ 𝑧𝐵𝑤 ∈ ( span ‘ { 𝐶 } ) 𝑦 = ( 𝑧 + 𝑤 ) ) )
8 1 cheli ( 𝑦𝐴𝑦 ∈ ℋ )
9 2 cheli ( 𝑧𝐵𝑧 ∈ ℋ )
10 elspansncl ( ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) → 𝑤 ∈ ℋ )
11 hvsubadd ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑦 𝑧 ) = 𝑤 ↔ ( 𝑧 + 𝑤 ) = 𝑦 ) )
12 eqcom ( ( 𝑧 + 𝑤 ) = 𝑦𝑦 = ( 𝑧 + 𝑤 ) )
13 11 12 bitrdi ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑦 𝑧 ) = 𝑤𝑦 = ( 𝑧 + 𝑤 ) ) )
14 8 9 10 13 syl3an ( ( 𝑦𝐴𝑧𝐵 ∧ ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ) → ( ( 𝑦 𝑧 ) = 𝑤𝑦 = ( 𝑧 + 𝑤 ) ) )
15 14 3expa ( ( ( 𝑦𝐴𝑧𝐵 ) ∧ ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ) → ( ( 𝑦 𝑧 ) = 𝑤𝑦 = ( 𝑧 + 𝑤 ) ) )
16 1 chshii 𝐴S
17 16 4 shsvsi ( ( 𝑦𝐴𝑧𝐵 ) → ( 𝑦 𝑧 ) ∈ ( 𝐴 + 𝐵 ) )
18 eleq1 ( ( 𝑦 𝑧 ) = 𝑤 → ( ( 𝑦 𝑧 ) ∈ ( 𝐴 + 𝐵 ) ↔ 𝑤 ∈ ( 𝐴 + 𝐵 ) ) )
19 17 18 syl5ibcom ( ( 𝑦𝐴𝑧𝐵 ) → ( ( 𝑦 𝑧 ) = 𝑤𝑤 ∈ ( 𝐴 + 𝐵 ) ) )
20 19 adantr ( ( ( 𝑦𝐴𝑧𝐵 ) ∧ ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ) → ( ( 𝑦 𝑧 ) = 𝑤𝑤 ∈ ( 𝐴 + 𝐵 ) ) )
21 15 20 sylbird ( ( ( 𝑦𝐴𝑧𝐵 ) ∧ ( 𝐶 ∈ ℋ ∧ 𝑤 ∈ ( span ‘ { 𝐶 } ) ) ) → ( 𝑦 = ( 𝑧 + 𝑤 ) → 𝑤 ∈ ( 𝐴 + 𝐵 ) ) )
22 21 exp32 ( ( 𝑦𝐴𝑧𝐵 ) → ( 𝐶 ∈ ℋ → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑦 = ( 𝑧 + 𝑤 ) → 𝑤 ∈ ( 𝐴 + 𝐵 ) ) ) ) )
23 22 com4r ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ( 𝑦𝐴𝑧𝐵 ) → ( 𝐶 ∈ ℋ → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑤 ∈ ( 𝐴 + 𝐵 ) ) ) ) )
24 23 imp31 ( ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) ∧ 𝐶 ∈ ℋ ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑤 ∈ ( 𝐴 + 𝐵 ) ) )
25 24 adantrr ( ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑤 ∈ ( 𝐴 + 𝐵 ) ) )
26 16 4 shscli ( 𝐴 + 𝐵 ) ∈ S
27 elspansn5 ( ( 𝐴 + 𝐵 ) ∈ S → ( ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) ∧ ( 𝑤 ∈ ( span ‘ { 𝐶 } ) ∧ 𝑤 ∈ ( 𝐴 + 𝐵 ) ) ) → 𝑤 = 0 ) )
28 26 27 ax-mp ( ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) ∧ ( 𝑤 ∈ ( span ‘ { 𝐶 } ) ∧ 𝑤 ∈ ( 𝐴 + 𝐵 ) ) ) → 𝑤 = 0 )
29 28 exp32 ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑤 ∈ ( 𝐴 + 𝐵 ) → 𝑤 = 0 ) ) )
30 29 adantl ( ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑤 ∈ ( 𝐴 + 𝐵 ) → 𝑤 = 0 ) ) )
31 25 30 mpdd ( ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑤 = 0 ) )
32 oveq2 ( 𝑤 = 0 → ( 𝑧 + 𝑤 ) = ( 𝑧 + 0 ) )
33 ax-hvaddid ( 𝑧 ∈ ℋ → ( 𝑧 + 0 ) = 𝑧 )
34 32 33 sylan9eqr ( ( 𝑧 ∈ ℋ ∧ 𝑤 = 0 ) → ( 𝑧 + 𝑤 ) = 𝑧 )
35 9 34 sylan ( ( 𝑧𝐵𝑤 = 0 ) → ( 𝑧 + 𝑤 ) = 𝑧 )
36 35 eqeq2d ( ( 𝑧𝐵𝑤 = 0 ) → ( 𝑦 = ( 𝑧 + 𝑤 ) ↔ 𝑦 = 𝑧 ) )
37 36 adantll ( ( ( 𝑦𝐴𝑧𝐵 ) ∧ 𝑤 = 0 ) → ( 𝑦 = ( 𝑧 + 𝑤 ) ↔ 𝑦 = 𝑧 ) )
38 37 biimpac ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( ( 𝑦𝐴𝑧𝐵 ) ∧ 𝑤 = 0 ) ) → 𝑦 = 𝑧 )
39 eleq1 ( 𝑦 = 𝑧 → ( 𝑦𝐵𝑧𝐵 ) )
40 39 biimparc ( ( 𝑧𝐵𝑦 = 𝑧 ) → 𝑦𝐵 )
41 elin ( 𝑦 ∈ ( 𝐵𝐴 ) ↔ ( 𝑦𝐵𝑦𝐴 ) )
42 41 biimpri ( ( 𝑦𝐵𝑦𝐴 ) → 𝑦 ∈ ( 𝐵𝐴 ) )
43 42 ancoms ( ( 𝑦𝐴𝑦𝐵 ) → 𝑦 ∈ ( 𝐵𝐴 ) )
44 40 43 sylan2 ( ( 𝑦𝐴 ∧ ( 𝑧𝐵𝑦 = 𝑧 ) ) → 𝑦 ∈ ( 𝐵𝐴 ) )
45 44 expr ( ( 𝑦𝐴𝑧𝐵 ) → ( 𝑦 = 𝑧𝑦 ∈ ( 𝐵𝐴 ) ) )
46 45 ad2antrl ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( ( 𝑦𝐴𝑧𝐵 ) ∧ 𝑤 = 0 ) ) → ( 𝑦 = 𝑧𝑦 ∈ ( 𝐵𝐴 ) ) )
47 38 46 mpd ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( ( 𝑦𝐴𝑧𝐵 ) ∧ 𝑤 = 0 ) ) → 𝑦 ∈ ( 𝐵𝐴 ) )
48 47 expr ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) → ( 𝑤 = 0𝑦 ∈ ( 𝐵𝐴 ) ) )
49 48 a1d ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑤 = 0𝑦 ∈ ( 𝐵𝐴 ) ) ) )
50 49 adantr ( ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑤 = 0𝑦 ∈ ( 𝐵𝐴 ) ) ) )
51 31 50 mpdd ( ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) ∧ ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑦 ∈ ( 𝐵𝐴 ) ) )
52 51 ex ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → 𝑦 ∈ ( 𝐵𝐴 ) ) ) )
53 52 com23 ( ( 𝑦 = ( 𝑧 + 𝑤 ) ∧ ( 𝑦𝐴𝑧𝐵 ) ) → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → 𝑦 ∈ ( 𝐵𝐴 ) ) ) )
54 53 exp32 ( 𝑦 = ( 𝑧 + 𝑤 ) → ( 𝑦𝐴 → ( 𝑧𝐵 → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → 𝑦 ∈ ( 𝐵𝐴 ) ) ) ) ) )
55 54 com4l ( 𝑦𝐴 → ( 𝑧𝐵 → ( 𝑤 ∈ ( span ‘ { 𝐶 } ) → ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → 𝑦 ∈ ( 𝐵𝐴 ) ) ) ) ) )
56 55 imp4c ( 𝑦𝐴 → ( ( ( 𝑧𝐵𝑤 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 = ( 𝑧 + 𝑤 ) ) → ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → 𝑦 ∈ ( 𝐵𝐴 ) ) ) )
57 56 exp4a ( 𝑦𝐴 → ( ( ( 𝑧𝐵𝑤 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 = ( 𝑧 + 𝑤 ) ) → ( 𝐶 ∈ ℋ → ( ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) → 𝑦 ∈ ( 𝐵𝐴 ) ) ) ) )
58 57 com23 ( 𝑦𝐴 → ( 𝐶 ∈ ℋ → ( ( ( 𝑧𝐵𝑤 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 = ( 𝑧 + 𝑤 ) ) → ( ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) → 𝑦 ∈ ( 𝐵𝐴 ) ) ) ) )
59 58 com4l ( 𝐶 ∈ ℋ → ( ( ( 𝑧𝐵𝑤 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑦 = ( 𝑧 + 𝑤 ) ) → ( ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) → ( 𝑦𝐴𝑦 ∈ ( 𝐵𝐴 ) ) ) ) )
60 59 expd ( 𝐶 ∈ ℋ → ( ( 𝑧𝐵𝑤 ∈ ( span ‘ { 𝐶 } ) ) → ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) → ( 𝑦𝐴𝑦 ∈ ( 𝐵𝐴 ) ) ) ) ) )
61 60 rexlimdvv ( 𝐶 ∈ ℋ → ( ∃ 𝑧𝐵𝑤 ∈ ( span ‘ { 𝐶 } ) 𝑦 = ( 𝑧 + 𝑤 ) → ( ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) → ( 𝑦𝐴𝑦 ∈ ( 𝐵𝐴 ) ) ) ) )
62 7 61 sylbid ( 𝐶 ∈ ℋ → ( 𝑦 ∈ ( 𝐵 + ( span ‘ { 𝐶 } ) ) → ( ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) → ( 𝑦𝐴𝑦 ∈ ( 𝐵𝐴 ) ) ) ) )
63 62 com23 ( 𝐶 ∈ ℋ → ( ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) → ( 𝑦 ∈ ( 𝐵 + ( span ‘ { 𝐶 } ) ) → ( 𝑦𝐴𝑦 ∈ ( 𝐵𝐴 ) ) ) ) )
64 63 imp4b ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → ( ( 𝑦 ∈ ( 𝐵 + ( span ‘ { 𝐶 } ) ) ∧ 𝑦𝐴 ) → 𝑦 ∈ ( 𝐵𝐴 ) ) )
65 3 64 syl5bi ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → ( 𝑦 ∈ ( ( 𝐵 + ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) → 𝑦 ∈ ( 𝐵𝐴 ) ) )
66 65 ssrdv ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → ( ( 𝐵 + ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) ⊆ ( 𝐵𝐴 ) )
67 shsub1 ( ( 𝐵S ∧ ( span ‘ { 𝐶 } ) ∈ S ) → 𝐵 ⊆ ( 𝐵 + ( span ‘ { 𝐶 } ) ) )
68 4 5 67 sylancr ( 𝐶 ∈ ℋ → 𝐵 ⊆ ( 𝐵 + ( span ‘ { 𝐶 } ) ) )
69 68 ssrind ( 𝐶 ∈ ℋ → ( 𝐵𝐴 ) ⊆ ( ( 𝐵 + ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) )
70 69 adantr ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → ( 𝐵𝐴 ) ⊆ ( ( 𝐵 + ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) )
71 66 70 eqssd ( ( 𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ ( 𝐴 + 𝐵 ) ) → ( ( 𝐵 + ( span ‘ { 𝐶 } ) ) ∩ 𝐴 ) = ( 𝐵𝐴 ) )