| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumdmdi.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | sumdmdi.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | elin | ⊢ ( 𝑦  ∈  ( ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ∩  𝐴 )  ↔  ( 𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 4 | 2 | chshii | ⊢ 𝐵  ∈   Sℋ | 
						
							| 5 |  | spansnsh | ⊢ ( 𝐶  ∈   ℋ  →  ( span ‘ { 𝐶 } )  ∈   Sℋ  ) | 
						
							| 6 |  | shsel | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  ( span ‘ { 𝐶 } )  ∈   Sℋ  )  →  ( 𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ↔  ∃ 𝑧  ∈  𝐵 ∃ 𝑤  ∈  ( span ‘ { 𝐶 } ) 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( 𝐶  ∈   ℋ  →  ( 𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ↔  ∃ 𝑧  ∈  𝐵 ∃ 𝑤  ∈  ( span ‘ { 𝐶 } ) 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 8 | 1 | cheli | ⊢ ( 𝑦  ∈  𝐴  →  𝑦  ∈   ℋ ) | 
						
							| 9 | 2 | cheli | ⊢ ( 𝑧  ∈  𝐵  →  𝑧  ∈   ℋ ) | 
						
							| 10 |  | elspansncl | ⊢ ( ( 𝐶  ∈   ℋ  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) )  →  𝑤  ∈   ℋ ) | 
						
							| 11 |  | hvsubadd | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑦  −ℎ  𝑧 )  =  𝑤  ↔  ( 𝑧  +ℎ  𝑤 )  =  𝑦 ) ) | 
						
							| 12 |  | eqcom | ⊢ ( ( 𝑧  +ℎ  𝑤 )  =  𝑦  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 13 | 11 12 | bitrdi | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑦  −ℎ  𝑧 )  =  𝑤  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 14 | 8 9 10 13 | syl3an | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵  ∧  ( 𝐶  ∈   ℋ  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) ) )  →  ( ( 𝑦  −ℎ  𝑧 )  =  𝑤  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 15 | 14 | 3expa | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝐶  ∈   ℋ  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) ) )  →  ( ( 𝑦  −ℎ  𝑧 )  =  𝑤  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 16 | 1 | chshii | ⊢ 𝐴  ∈   Sℋ | 
						
							| 17 | 16 4 | shsvsi | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦  −ℎ  𝑧 )  ∈  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 18 |  | eleq1 | ⊢ ( ( 𝑦  −ℎ  𝑧 )  =  𝑤  →  ( ( 𝑦  −ℎ  𝑧 )  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 19 | 17 18 | syl5ibcom | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑦  −ℎ  𝑧 )  =  𝑤  →  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝐶  ∈   ℋ  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) ) )  →  ( ( 𝑦  −ℎ  𝑧 )  =  𝑤  →  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 21 | 15 20 | sylbird | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝐶  ∈   ℋ  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) ) )  →  ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 22 | 21 | exp32 | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( 𝐶  ∈   ℋ  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) ) ) | 
						
							| 23 | 22 | com4r | ⊢ ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( 𝐶  ∈   ℋ  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) ) ) | 
						
							| 24 | 23 | imp31 | ⊢ ( ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  𝐶  ∈   ℋ )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 25 | 24 | adantrr | ⊢ ( ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 26 | 16 4 | shscli | ⊢ ( 𝐴  +ℋ  𝐵 )  ∈   Sℋ | 
						
							| 27 |  | elspansn5 | ⊢ ( ( 𝐴  +ℋ  𝐵 )  ∈   Sℋ   →  ( ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  ∧  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  ∧  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  𝑤  =  0ℎ ) ) | 
						
							| 28 | 26 27 | ax-mp | ⊢ ( ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  ∧  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  ∧  𝑤  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  𝑤  =  0ℎ ) | 
						
							| 29 | 28 | exp32 | ⊢ ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  ( 𝑤  ∈  ( 𝐴  +ℋ  𝐵 )  →  𝑤  =  0ℎ ) ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  ( 𝑤  ∈  ( 𝐴  +ℋ  𝐵 )  →  𝑤  =  0ℎ ) ) ) | 
						
							| 31 | 25 30 | mpdd | ⊢ ( ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  𝑤  =  0ℎ ) ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑤  =  0ℎ  →  ( 𝑧  +ℎ  𝑤 )  =  ( 𝑧  +ℎ  0ℎ ) ) | 
						
							| 33 |  | ax-hvaddid | ⊢ ( 𝑧  ∈   ℋ  →  ( 𝑧  +ℎ  0ℎ )  =  𝑧 ) | 
						
							| 34 | 32 33 | sylan9eqr | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑤  =  0ℎ )  →  ( 𝑧  +ℎ  𝑤 )  =  𝑧 ) | 
						
							| 35 | 9 34 | sylan | ⊢ ( ( 𝑧  ∈  𝐵  ∧  𝑤  =  0ℎ )  →  ( 𝑧  +ℎ  𝑤 )  =  𝑧 ) | 
						
							| 36 | 35 | eqeq2d | ⊢ ( ( 𝑧  ∈  𝐵  ∧  𝑤  =  0ℎ )  →  ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 37 | 36 | adantll | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ∧  𝑤  =  0ℎ )  →  ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 38 | 37 | biimpac | ⊢ ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ∧  𝑤  =  0ℎ ) )  →  𝑦  =  𝑧 ) | 
						
							| 39 |  | eleq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  ∈  𝐵  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 40 | 39 | biimparc | ⊢ ( ( 𝑧  ∈  𝐵  ∧  𝑦  =  𝑧 )  →  𝑦  ∈  𝐵 ) | 
						
							| 41 |  | elin | ⊢ ( 𝑦  ∈  ( 𝐵  ∩  𝐴 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 42 | 41 | biimpri | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 43 | 42 | ancoms | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 44 | 40 43 | sylan2 | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝐵  ∧  𝑦  =  𝑧 ) )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 45 | 44 | expr | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦  =  𝑧  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) | 
						
							| 46 | 45 | ad2antrl | ⊢ ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ∧  𝑤  =  0ℎ ) )  →  ( 𝑦  =  𝑧  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) | 
						
							| 47 | 38 46 | mpd | ⊢ ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ∧  𝑤  =  0ℎ ) )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 48 | 47 | expr | ⊢ ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑤  =  0ℎ  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) | 
						
							| 49 | 48 | a1d | ⊢ ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  ( 𝑤  =  0ℎ  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  ( 𝑤  =  0ℎ  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) | 
						
							| 51 | 31 50 | mpdd | ⊢ ( ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) | 
						
							| 52 | 51 | ex | ⊢ ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) | 
						
							| 53 | 52 | com23 | ⊢ ( ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) | 
						
							| 54 | 53 | exp32 | ⊢ ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ( 𝑦  ∈  𝐴  →  ( 𝑧  ∈  𝐵  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) ) ) | 
						
							| 55 | 54 | com4l | ⊢ ( 𝑦  ∈  𝐴  →  ( 𝑧  ∈  𝐵  →  ( 𝑤  ∈  ( span ‘ { 𝐶 } )  →  ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) ) ) | 
						
							| 56 | 55 | imp4c | ⊢ ( 𝑦  ∈  𝐴  →  ( ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) )  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) | 
						
							| 57 | 56 | exp4a | ⊢ ( 𝑦  ∈  𝐴  →  ( ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) )  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( 𝐶  ∈   ℋ  →  ( ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) ) | 
						
							| 58 | 57 | com23 | ⊢ ( 𝑦  ∈  𝐴  →  ( 𝐶  ∈   ℋ  →  ( ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) )  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) ) | 
						
							| 59 | 58 | com4l | ⊢ ( 𝐶  ∈   ℋ  →  ( ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) )  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) ) | 
						
							| 60 | 59 | expd | ⊢ ( 𝐶  ∈   ℋ  →  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  ( span ‘ { 𝐶 } ) )  →  ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ( ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) ) ) | 
						
							| 61 | 60 | rexlimdvv | ⊢ ( 𝐶  ∈   ℋ  →  ( ∃ 𝑧  ∈  𝐵 ∃ 𝑤  ∈  ( span ‘ { 𝐶 } ) 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ( ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) ) | 
						
							| 62 | 7 61 | sylbid | ⊢ ( 𝐶  ∈   ℋ  →  ( 𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  →  ( ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) ) | 
						
							| 63 | 62 | com23 | ⊢ ( 𝐶  ∈   ℋ  →  ( ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) ) ) | 
						
							| 64 | 63 | imp4b | ⊢ ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( ( 𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) | 
						
							| 65 | 3 64 | biimtrid | ⊢ ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( 𝑦  ∈  ( ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ∩  𝐴 )  →  𝑦  ∈  ( 𝐵  ∩  𝐴 ) ) ) | 
						
							| 66 | 65 | ssrdv | ⊢ ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ∩  𝐴 )  ⊆  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 67 |  | shsub1 | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  ( span ‘ { 𝐶 } )  ∈   Sℋ  )  →  𝐵  ⊆  ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) ) ) | 
						
							| 68 | 4 5 67 | sylancr | ⊢ ( 𝐶  ∈   ℋ  →  𝐵  ⊆  ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) ) ) | 
						
							| 69 | 68 | ssrind | ⊢ ( 𝐶  ∈   ℋ  →  ( 𝐵  ∩  𝐴 )  ⊆  ( ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ∩  𝐴 ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( 𝐵  ∩  𝐴 )  ⊆  ( ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ∩  𝐴 ) ) | 
						
							| 71 | 66 70 | eqssd | ⊢ ( ( 𝐶  ∈   ℋ  ∧  ¬  𝐶  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝐶 } ) )  ∩  𝐴 )  =  ( 𝐵  ∩  𝐴 ) ) |