| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumdmdi.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | sumdmdi.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 | 1 2 | chjcli | ⊢ ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ | 
						
							| 4 | 3 | cheli | ⊢ ( 𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 )  →  𝑦  ∈   ℋ ) | 
						
							| 5 |  | spansnsh | ⊢ ( 𝑦  ∈   ℋ  →  ( span ‘ { 𝑦 } )  ∈   Sℋ  ) | 
						
							| 6 | 2 | chshii | ⊢ 𝐵  ∈   Sℋ | 
						
							| 7 |  | shsub2 | ⊢ ( ( ( span ‘ { 𝑦 } )  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( span ‘ { 𝑦 } )  ⊆  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) ) ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( 𝑦  ∈   ℋ  →  ( span ‘ { 𝑦 } )  ⊆  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) ) ) | 
						
							| 9 |  | spansnid | ⊢ ( 𝑦  ∈   ℋ  →  𝑦  ∈  ( span ‘ { 𝑦 } ) ) | 
						
							| 10 | 8 9 | sseldd | ⊢ ( 𝑦  ∈   ℋ  →  𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) ) ) | 
						
							| 11 | 10 | ad2antrl | ⊢ ( ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ∧  ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) ) ) | 
						
							| 12 |  | elin | ⊢ ( 𝑦  ∈  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ↔  ( 𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∧  𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 13 |  | df-ne | ⊢ ( 𝑦  ≠  0ℎ  ↔  ¬  𝑦  =  0ℎ ) | 
						
							| 14 |  | spansna | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑦  ≠  0ℎ )  →  ( span ‘ { 𝑦 } )  ∈  HAtoms ) | 
						
							| 15 | 13 14 | sylan2br | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  =  0ℎ )  →  ( span ‘ { 𝑦 } )  ∈  HAtoms ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑥  =  ( span ‘ { 𝑦 } )  →  ( 𝑥  ∨ℋ  𝐵 )  =  ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 ) ) | 
						
							| 17 | 16 | ineq1d | ⊢ ( 𝑥  =  ( span ‘ { 𝑦 } )  →  ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 18 | 16 | ineq1d | ⊢ ( 𝑥  =  ( span ‘ { 𝑦 } )  →  ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  =  ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  𝐴 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑥  =  ( span ‘ { 𝑦 } )  →  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  =  ( ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 20 | 17 19 | sseq12d | ⊢ ( 𝑥  =  ( span ‘ { 𝑦 } )  →  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ↔  ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 21 | 20 | rspcv | ⊢ ( ( span ‘ { 𝑦 } )  ∈  HAtoms  →  ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 22 | 15 21 | syl | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  =  0ℎ )  →  ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 23 |  | spansnj | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑦  ∈   ℋ )  →  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  =  ( 𝐵  ∨ℋ  ( span ‘ { 𝑦 } ) ) ) | 
						
							| 24 |  | spansnch | ⊢ ( 𝑦  ∈   ℋ  →  ( span ‘ { 𝑦 } )  ∈   Cℋ  ) | 
						
							| 25 |  | chjcom | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  ( span ‘ { 𝑦 } )  ∈   Cℋ  )  →  ( 𝐵  ∨ℋ  ( span ‘ { 𝑦 } ) )  =  ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 ) ) | 
						
							| 26 | 24 25 | sylan2 | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑦  ∈   ℋ )  →  ( 𝐵  ∨ℋ  ( span ‘ { 𝑦 } ) )  =  ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 ) ) | 
						
							| 27 | 23 26 | eqtrd | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑦  ∈   ℋ )  →  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  =  ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 ) ) | 
						
							| 28 | 2 27 | mpan | ⊢ ( 𝑦  ∈   ℋ  →  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  =  ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 ) ) | 
						
							| 29 | 28 | ineq1d | ⊢ ( 𝑦  ∈   ℋ  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 30 | 28 | ineq1d | ⊢ ( 𝑦  ∈   ℋ  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  =  ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  𝐴 ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝑦  ∈   ℋ  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  =  ( ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 32 | 29 31 | sseq12d | ⊢ ( 𝑦  ∈   ℋ  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  ↔  ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  =  0ℎ )  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  ↔  ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( ( span ‘ { 𝑦 } )  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 34 | 22 33 | sylibrd | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  =  0ℎ )  →  ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 35 | 34 | com12 | ⊢ ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  =  0ℎ )  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 36 | 35 | expdimp | ⊢ ( ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ∧  𝑦  ∈   ℋ )  →  ( ¬  𝑦  =  0ℎ  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 37 |  | ssid | ⊢ 𝐵  ⊆  𝐵 | 
						
							| 38 |  | sneq | ⊢ ( 𝑦  =  0ℎ  →  { 𝑦 }  =  { 0ℎ } ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( 𝑦  =  0ℎ  →  ( span ‘ { 𝑦 } )  =  ( span ‘ { 0ℎ } ) ) | 
						
							| 40 |  | spansn0 | ⊢ ( span ‘ { 0ℎ } )  =  0ℋ | 
						
							| 41 | 39 40 | eqtrdi | ⊢ ( 𝑦  =  0ℎ  →  ( span ‘ { 𝑦 } )  =  0ℋ ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( 𝑦  =  0ℎ  →  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  =  ( 𝐵  +ℋ  0ℋ ) ) | 
						
							| 43 | 6 | shs0i | ⊢ ( 𝐵  +ℋ  0ℋ )  =  𝐵 | 
						
							| 44 | 42 43 | eqtrdi | ⊢ ( 𝑦  =  0ℎ  →  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  =  𝐵 ) | 
						
							| 45 | 44 | ineq1d | ⊢ ( 𝑦  =  0ℎ  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  ( 𝐵  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 46 |  | inss1 | ⊢ ( 𝐵  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  𝐵 | 
						
							| 47 | 2 1 | chub2i | ⊢ 𝐵  ⊆  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 48 | 37 47 | ssini | ⊢ 𝐵  ⊆  ( 𝐵  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) | 
						
							| 49 | 46 48 | eqssi | ⊢ ( 𝐵  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  𝐵 | 
						
							| 50 | 45 49 | eqtrdi | ⊢ ( 𝑦  =  0ℎ  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  𝐵 ) | 
						
							| 51 | 44 | ineq1d | ⊢ ( 𝑦  =  0ℎ  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝑦  =  0ℎ  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  =  ( ( 𝐵  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 53 | 2 1 | chincli | ⊢ ( 𝐵  ∩  𝐴 )  ∈   Cℋ | 
						
							| 54 | 53 2 | chjcomi | ⊢ ( ( 𝐵  ∩  𝐴 )  ∨ℋ  𝐵 )  =  ( 𝐵  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 55 | 2 1 | chabs1i | ⊢ ( 𝐵  ∨ℋ  ( 𝐵  ∩  𝐴 ) )  =  𝐵 | 
						
							| 56 | 54 55 | eqtri | ⊢ ( ( 𝐵  ∩  𝐴 )  ∨ℋ  𝐵 )  =  𝐵 | 
						
							| 57 | 52 56 | eqtrdi | ⊢ ( 𝑦  =  0ℎ  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  =  𝐵 ) | 
						
							| 58 | 50 57 | sseq12d | ⊢ ( 𝑦  =  0ℎ  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  ↔  𝐵  ⊆  𝐵 ) ) | 
						
							| 59 | 37 58 | mpbiri | ⊢ ( 𝑦  =  0ℎ  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 60 | 36 59 | pm2.61d2 | ⊢ ( ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ∧  𝑦  ∈   ℋ )  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 61 | 60 | adantrr | ⊢ ( ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ∧  ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 62 | 1 2 | sumdmdlem | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  =  ( ( 𝐵  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 64 | 63 56 | eqtrdi | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  =  𝐵 ) | 
						
							| 65 | 1 | chshii | ⊢ 𝐴  ∈   Sℋ | 
						
							| 66 | 6 65 | shsub2i | ⊢ 𝐵  ⊆  ( 𝐴  +ℋ  𝐵 ) | 
						
							| 67 | 64 66 | eqsstrdi | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ∧  ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  𝐴 )  ∨ℋ  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 69 | 61 68 | sstrd | ⊢ ( ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ∧  ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 70 | 69 | sseld | ⊢ ( ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ∧  ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( 𝑦  ∈  ( ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 71 | 12 70 | biimtrrid | ⊢ ( ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ∧  ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( ( 𝑦  ∈  ( 𝐵  +ℋ  ( span ‘ { 𝑦 } ) )  ∧  𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 ) )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 72 | 11 71 | mpand | ⊢ ( ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  ∧  ( 𝑦  ∈   ℋ  ∧  ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) )  →  ( 𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 73 | 72 | exp32 | ⊢ ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( 𝑦  ∈   ℋ  →  ( ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) ) ) | 
						
							| 74 | 73 | com34 | ⊢ ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( 𝑦  ∈   ℋ  →  ( 𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 )  →  ( ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) ) ) | 
						
							| 75 |  | pm2.18 | ⊢ ( ( ¬  𝑦  ∈  ( 𝐴  +ℋ  𝐵 )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 76 | 74 75 | syl8 | ⊢ ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( 𝑦  ∈   ℋ  →  ( 𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) ) | 
						
							| 77 | 4 76 | syl5 | ⊢ ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( 𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 )  →  ( 𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) ) | 
						
							| 78 | 77 | pm2.43d | ⊢ ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( 𝑦  ∈  ( 𝐴  ∨ℋ  𝐵 )  →  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 79 | 78 | ssrdv | ⊢ ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 80 | 1 2 | chsleji | ⊢ ( 𝐴  +ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 81 | 79 80 | jctil | ⊢ ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( ( 𝐴  +ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 82 |  | eqss | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  ↔  ( ( 𝐴  +ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 83 | 81 82 | sylibr | ⊢ ( ∀ 𝑥  ∈  HAtoms ( ( 𝑥  ∨ℋ  𝐵 )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( ( 𝑥  ∨ℋ  𝐵 )  ∩  𝐴 )  ∨ℋ  𝐵 )  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 ) ) |