Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
sumdmdi.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
4 |
3
|
cheli |
⊢ ( 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) → 𝑦 ∈ ℋ ) |
5 |
|
spansnsh |
⊢ ( 𝑦 ∈ ℋ → ( span ‘ { 𝑦 } ) ∈ Sℋ ) |
6 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
7 |
|
shsub2 |
⊢ ( ( ( span ‘ { 𝑦 } ) ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( span ‘ { 𝑦 } ) ⊆ ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ) |
8 |
5 6 7
|
sylancl |
⊢ ( 𝑦 ∈ ℋ → ( span ‘ { 𝑦 } ) ⊆ ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ) |
9 |
|
spansnid |
⊢ ( 𝑦 ∈ ℋ → 𝑦 ∈ ( span ‘ { 𝑦 } ) ) |
10 |
8 9
|
sseldd |
⊢ ( 𝑦 ∈ ℋ → 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ) |
11 |
10
|
ad2antrl |
⊢ ( ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ∧ ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ) |
12 |
|
elin |
⊢ ( 𝑦 ∈ ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∧ 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
13 |
|
df-ne |
⊢ ( 𝑦 ≠ 0ℎ ↔ ¬ 𝑦 = 0ℎ ) |
14 |
|
spansna |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ∈ HAtoms ) |
15 |
13 14
|
sylan2br |
⊢ ( ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0ℎ ) → ( span ‘ { 𝑦 } ) ∈ HAtoms ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = ( span ‘ { 𝑦 } ) → ( 𝑥 ∨ℋ 𝐵 ) = ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ) |
17 |
16
|
ineq1d |
⊢ ( 𝑥 = ( span ‘ { 𝑦 } ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
18 |
16
|
ineq1d |
⊢ ( 𝑥 = ( span ‘ { 𝑦 } ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ 𝐴 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑥 = ( span ‘ { 𝑦 } ) → ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
20 |
17 19
|
sseq12d |
⊢ ( 𝑥 = ( span ‘ { 𝑦 } ) → ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ↔ ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
21 |
20
|
rspcv |
⊢ ( ( span ‘ { 𝑦 } ) ∈ HAtoms → ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
22 |
15 21
|
syl |
⊢ ( ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0ℎ ) → ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
23 |
|
spansnj |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑦 ∈ ℋ ) → ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) = ( 𝐵 ∨ℋ ( span ‘ { 𝑦 } ) ) ) |
24 |
|
spansnch |
⊢ ( 𝑦 ∈ ℋ → ( span ‘ { 𝑦 } ) ∈ Cℋ ) |
25 |
|
chjcom |
⊢ ( ( 𝐵 ∈ Cℋ ∧ ( span ‘ { 𝑦 } ) ∈ Cℋ ) → ( 𝐵 ∨ℋ ( span ‘ { 𝑦 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ) |
26 |
24 25
|
sylan2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑦 ∈ ℋ ) → ( 𝐵 ∨ℋ ( span ‘ { 𝑦 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ) |
27 |
23 26
|
eqtrd |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑦 ∈ ℋ ) → ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ) |
28 |
2 27
|
mpan |
⊢ ( 𝑦 ∈ ℋ → ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ) |
29 |
28
|
ineq1d |
⊢ ( 𝑦 ∈ ℋ → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
30 |
28
|
ineq1d |
⊢ ( 𝑦 ∈ ℋ → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) = ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ 𝐴 ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝑦 ∈ ℋ → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
32 |
29 31
|
sseq12d |
⊢ ( 𝑦 ∈ ℋ → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ↔ ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0ℎ ) → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ↔ ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( ( span ‘ { 𝑦 } ) ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
34 |
22 33
|
sylibrd |
⊢ ( ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0ℎ ) → ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
35 |
34
|
com12 |
⊢ ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 = 0ℎ ) → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
36 |
35
|
expdimp |
⊢ ( ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ∧ 𝑦 ∈ ℋ ) → ( ¬ 𝑦 = 0ℎ → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
37 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
38 |
|
sneq |
⊢ ( 𝑦 = 0ℎ → { 𝑦 } = { 0ℎ } ) |
39 |
38
|
fveq2d |
⊢ ( 𝑦 = 0ℎ → ( span ‘ { 𝑦 } ) = ( span ‘ { 0ℎ } ) ) |
40 |
|
spansn0 |
⊢ ( span ‘ { 0ℎ } ) = 0ℋ |
41 |
39 40
|
eqtrdi |
⊢ ( 𝑦 = 0ℎ → ( span ‘ { 𝑦 } ) = 0ℋ ) |
42 |
41
|
oveq2d |
⊢ ( 𝑦 = 0ℎ → ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) = ( 𝐵 +ℋ 0ℋ ) ) |
43 |
6
|
shs0i |
⊢ ( 𝐵 +ℋ 0ℋ ) = 𝐵 |
44 |
42 43
|
eqtrdi |
⊢ ( 𝑦 = 0ℎ → ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) = 𝐵 ) |
45 |
44
|
ineq1d |
⊢ ( 𝑦 = 0ℎ → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐵 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
46 |
|
inss1 |
⊢ ( 𝐵 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ 𝐵 |
47 |
2 1
|
chub2i |
⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
48 |
37 47
|
ssini |
⊢ 𝐵 ⊆ ( 𝐵 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) |
49 |
46 48
|
eqssi |
⊢ ( 𝐵 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐵 |
50 |
45 49
|
eqtrdi |
⊢ ( 𝑦 = 0ℎ → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐵 ) |
51 |
44
|
ineq1d |
⊢ ( 𝑦 = 0ℎ → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) = ( 𝐵 ∩ 𝐴 ) ) |
52 |
51
|
oveq1d |
⊢ ( 𝑦 = 0ℎ → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( 𝐵 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
53 |
2 1
|
chincli |
⊢ ( 𝐵 ∩ 𝐴 ) ∈ Cℋ |
54 |
53 2
|
chjcomi |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) |
55 |
2 1
|
chabs1i |
⊢ ( 𝐵 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) = 𝐵 |
56 |
54 55
|
eqtri |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∨ℋ 𝐵 ) = 𝐵 |
57 |
52 56
|
eqtrdi |
⊢ ( 𝑦 = 0ℎ → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = 𝐵 ) |
58 |
50 57
|
sseq12d |
⊢ ( 𝑦 = 0ℎ → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ↔ 𝐵 ⊆ 𝐵 ) ) |
59 |
37 58
|
mpbiri |
⊢ ( 𝑦 = 0ℎ → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
60 |
36 59
|
pm2.61d2 |
⊢ ( ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
61 |
60
|
adantrr |
⊢ ( ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ∧ ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
62 |
1 2
|
sumdmdlem |
⊢ ( ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) = ( 𝐵 ∩ 𝐴 ) ) |
63 |
62
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( 𝐵 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
64 |
63 56
|
eqtrdi |
⊢ ( ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = 𝐵 ) |
65 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
66 |
6 65
|
shsub2i |
⊢ 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) |
67 |
64 66
|
eqsstrdi |
⊢ ( ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
68 |
67
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ∧ ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
69 |
61 68
|
sstrd |
⊢ ( ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ∧ ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
70 |
69
|
sseld |
⊢ ( ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ∧ ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( 𝑦 ∈ ( ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
71 |
12 70
|
syl5bir |
⊢ ( ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ∧ ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( ( 𝑦 ∈ ( 𝐵 +ℋ ( span ‘ { 𝑦 } ) ) ∧ 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
72 |
11 71
|
mpand |
⊢ ( ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ∧ ( 𝑦 ∈ ℋ ∧ ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
73 |
72
|
exp32 |
⊢ ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝑦 ∈ ℋ → ( ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) ) |
74 |
73
|
com34 |
⊢ ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝑦 ∈ ℋ → ( 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) → ( ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) ) |
75 |
|
pm2.18 |
⊢ ( ( ¬ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) |
76 |
74 75
|
syl8 |
⊢ ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝑦 ∈ ℋ → ( 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
77 |
4 76
|
syl5 |
⊢ ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
78 |
77
|
pm2.43d |
⊢ ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) → 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
79 |
78
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
80 |
1 2
|
chsleji |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
81 |
79 80
|
jctil |
⊢ ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
82 |
|
eqss |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
83 |
81 82
|
sylibr |
⊢ ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |