Metamath Proof Explorer


Theorem sumdmdi

Description: The subspace sum of two Hilbert lattice elements is closed iff the elements are a dual modular pair. Theorem 2 of Holland p. 1519. (Contributed by NM, 14-Dec-2004) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion sumdmdi ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ↔ 𝐴 𝑀* 𝐵 )

Proof

Step Hyp Ref Expression
1 sumdmdi.1 𝐴C
2 sumdmdi.2 𝐵C
3 1 2 sumdmdii ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → 𝐴 𝑀* 𝐵 )
4 dmdbr4 ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 ↔ ∀ 𝑥C ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) )
5 1 2 4 mp2an ( 𝐴 𝑀* 𝐵 ↔ ∀ 𝑥C ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) )
6 atelch ( 𝑥 ∈ HAtoms → 𝑥C )
7 6 imim1i ( ( 𝑥C → ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) → ( 𝑥 ∈ HAtoms → ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) )
8 7 ralimi2 ( ∀ 𝑥C ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) → ∀ 𝑥 ∈ HAtoms ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) )
9 5 8 sylbi ( 𝐴 𝑀* 𝐵 → ∀ 𝑥 ∈ HAtoms ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) )
10 1 2 sumdmdlem2 ( ∀ 𝑥 ∈ HAtoms ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) → ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) )
11 9 10 syl ( 𝐴 𝑀* 𝐵 → ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) )
12 3 11 impbii ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ↔ 𝐴 𝑀* 𝐵 )