Metamath Proof Explorer


Theorem sumdmdi

Description: The subspace sum of two Hilbert lattice elements is closed iff the elements are a dual modular pair. Theorem 2 of Holland p. 1519. (Contributed by NM, 14-Dec-2004) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 AC
sumdmdi.2 BC
Assertion sumdmdi A+B=ABA𝑀*B

Proof

Step Hyp Ref Expression
1 sumdmdi.1 AC
2 sumdmdi.2 BC
3 1 2 sumdmdii A+B=ABA𝑀*B
4 dmdbr4 ACBCA𝑀*BxCxBABxBAB
5 1 2 4 mp2an A𝑀*BxCxBABxBAB
6 atelch xHAtomsxC
7 6 imim1i xCxBABxBABxHAtomsxBABxBAB
8 7 ralimi2 xCxBABxBABxHAtomsxBABxBAB
9 5 8 sylbi A𝑀*BxHAtomsxBABxBAB
10 1 2 sumdmdlem2 xHAtomsxBABxBABA+B=AB
11 9 10 syl A𝑀*BA+B=AB
12 3 11 impbii A+B=ABA𝑀*B