Metamath Proof Explorer


Theorem sumdmdi

Description: The subspace sum of two Hilbert lattice elements is closed iff the elements are a dual modular pair. Theorem 2 of Holland p. 1519. (Contributed by NM, 14-Dec-2004) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1
|- A e. CH
sumdmdi.2
|- B e. CH
Assertion sumdmdi
|- ( ( A +H B ) = ( A vH B ) <-> A MH* B )

Proof

Step Hyp Ref Expression
1 sumdmdi.1
 |-  A e. CH
2 sumdmdi.2
 |-  B e. CH
3 1 2 sumdmdii
 |-  ( ( A +H B ) = ( A vH B ) -> A MH* B )
4 dmdbr4
 |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) )
5 1 2 4 mp2an
 |-  ( A MH* B <-> A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) )
6 atelch
 |-  ( x e. HAtoms -> x e. CH )
7 6 imim1i
 |-  ( ( x e. CH -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) -> ( x e. HAtoms -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) )
8 7 ralimi2
 |-  ( A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) )
9 5 8 sylbi
 |-  ( A MH* B -> A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) )
10 1 2 sumdmdlem2
 |-  ( A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> ( A +H B ) = ( A vH B ) )
11 9 10 syl
 |-  ( A MH* B -> ( A +H B ) = ( A vH B ) )
12 3 11 impbii
 |-  ( ( A +H B ) = ( A vH B ) <-> A MH* B )