Metamath Proof Explorer


Theorem dmdbr4ati

Description: Dual modular pair property in terms of atoms. (Contributed by NM, 15-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1
|- A e. CH
sumdmdi.2
|- B e. CH
Assertion dmdbr4ati
|- ( A MH* B <-> A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) )

Proof

Step Hyp Ref Expression
1 sumdmdi.1
 |-  A e. CH
2 sumdmdi.2
 |-  B e. CH
3 dmdbr4
 |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) )
4 1 2 3 mp2an
 |-  ( A MH* B <-> A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) )
5 atelch
 |-  ( x e. HAtoms -> x e. CH )
6 5 imim1i
 |-  ( ( x e. CH -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) -> ( x e. HAtoms -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) )
7 6 ralimi2
 |-  ( A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) )
8 4 7 sylbi
 |-  ( A MH* B -> A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) )
9 1 2 sumdmdlem2
 |-  ( A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> ( A +H B ) = ( A vH B ) )
10 1 2 sumdmdi
 |-  ( ( A +H B ) = ( A vH B ) <-> A MH* B )
11 9 10 sylib
 |-  ( A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> A MH* B )
12 8 11 impbii
 |-  ( A MH* B <-> A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) )