| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumdmdi.1 |  |-  A e. CH | 
						
							| 2 |  | sumdmdi.2 |  |-  B e. CH | 
						
							| 3 |  | dmdi4 |  |-  ( ( A e. CH /\ B e. CH /\ x e. CH ) -> ( A MH* B -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 4 | 1 2 3 | mp3an12 |  |-  ( x e. CH -> ( A MH* B -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 5 |  | atelch |  |-  ( x e. HAtoms -> x e. CH ) | 
						
							| 6 | 4 5 | syl11 |  |-  ( A MH* B -> ( x e. HAtoms -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 7 | 6 | a1dd |  |-  ( A MH* B -> ( x e. HAtoms -> ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) | 
						
							| 8 | 7 | ralrimiv |  |-  ( A MH* B -> A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 9 |  | chjcom |  |-  ( ( B e. CH /\ x e. CH ) -> ( B vH x ) = ( x vH B ) ) | 
						
							| 10 | 2 5 9 | sylancr |  |-  ( x e. HAtoms -> ( B vH x ) = ( x vH B ) ) | 
						
							| 11 | 10 | ineq1d |  |-  ( x e. HAtoms -> ( ( B vH x ) i^i ( B vH A ) ) = ( ( x vH B ) i^i ( B vH A ) ) ) | 
						
							| 12 | 1 2 | chjcomi |  |-  ( A vH B ) = ( B vH A ) | 
						
							| 13 | 12 | ineq2i |  |-  ( ( x vH B ) i^i ( A vH B ) ) = ( ( x vH B ) i^i ( B vH A ) ) | 
						
							| 14 | 11 13 | eqtr4di |  |-  ( x e. HAtoms -> ( ( B vH x ) i^i ( B vH A ) ) = ( ( x vH B ) i^i ( A vH B ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( B vH x ) i^i ( B vH A ) ) = ( ( x vH B ) i^i ( A vH B ) ) ) | 
						
							| 16 | 12 | sseq2i |  |-  ( x C_ ( A vH B ) <-> x C_ ( B vH A ) ) | 
						
							| 17 | 16 | notbii |  |-  ( -. x C_ ( A vH B ) <-> -. x C_ ( B vH A ) ) | 
						
							| 18 | 2 1 | atabs2i |  |-  ( x e. HAtoms -> ( -. x C_ ( B vH A ) -> ( ( B vH x ) i^i ( B vH A ) ) = B ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( x e. HAtoms /\ -. x C_ ( B vH A ) ) -> ( ( B vH x ) i^i ( B vH A ) ) = B ) | 
						
							| 20 | 17 19 | sylan2b |  |-  ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( B vH x ) i^i ( B vH A ) ) = B ) | 
						
							| 21 | 15 20 | eqtr3d |  |-  ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( x vH B ) i^i ( A vH B ) ) = B ) | 
						
							| 22 |  | chjcl |  |-  ( ( x e. CH /\ B e. CH ) -> ( x vH B ) e. CH ) | 
						
							| 23 | 5 2 22 | sylancl |  |-  ( x e. HAtoms -> ( x vH B ) e. CH ) | 
						
							| 24 |  | chincl |  |-  ( ( ( x vH B ) e. CH /\ A e. CH ) -> ( ( x vH B ) i^i A ) e. CH ) | 
						
							| 25 | 23 1 24 | sylancl |  |-  ( x e. HAtoms -> ( ( x vH B ) i^i A ) e. CH ) | 
						
							| 26 |  | chub2 |  |-  ( ( B e. CH /\ ( ( x vH B ) i^i A ) e. CH ) -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) | 
						
							| 27 | 2 25 26 | sylancr |  |-  ( x e. HAtoms -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) | 
						
							| 29 | 21 28 | eqsstrd |  |-  ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) | 
						
							| 30 | 29 | ex |  |-  ( x e. HAtoms -> ( -. x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 31 | 30 | biantrud |  |-  ( x e. HAtoms -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) /\ ( -. x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) ) | 
						
							| 32 |  | pm4.83 |  |-  ( ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) /\ ( -. x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) <-> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) | 
						
							| 33 | 31 32 | bitrdi |  |-  ( x e. HAtoms -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 34 | 33 | ralbiia |  |-  ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) | 
						
							| 35 | 1 2 | sumdmdlem2 |  |-  ( A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> ( A +H B ) = ( A vH B ) ) | 
						
							| 36 | 34 35 | sylbi |  |-  ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) -> ( A +H B ) = ( A vH B ) ) | 
						
							| 37 | 1 2 | sumdmdi |  |-  ( ( A +H B ) = ( A vH B ) <-> A MH* B ) | 
						
							| 38 | 36 37 | sylib |  |-  ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) -> A MH* B ) | 
						
							| 39 | 8 38 | impbii |  |-  ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 40 | 2 1 | chub2i |  |-  B C_ ( A vH B ) | 
						
							| 41 | 40 | biantru |  |-  ( x C_ ( A vH B ) <-> ( x C_ ( A vH B ) /\ B C_ ( A vH B ) ) ) | 
						
							| 42 | 1 2 | chjcli |  |-  ( A vH B ) e. CH | 
						
							| 43 |  | chlub |  |-  ( ( x e. CH /\ B e. CH /\ ( A vH B ) e. CH ) -> ( ( x C_ ( A vH B ) /\ B C_ ( A vH B ) ) <-> ( x vH B ) C_ ( A vH B ) ) ) | 
						
							| 44 | 2 42 43 | mp3an23 |  |-  ( x e. CH -> ( ( x C_ ( A vH B ) /\ B C_ ( A vH B ) ) <-> ( x vH B ) C_ ( A vH B ) ) ) | 
						
							| 45 | 41 44 | bitrid |  |-  ( x e. CH -> ( x C_ ( A vH B ) <-> ( x vH B ) C_ ( A vH B ) ) ) | 
						
							| 46 |  | ssid |  |-  ( x vH B ) C_ ( x vH B ) | 
						
							| 47 | 46 | biantrur |  |-  ( ( x vH B ) C_ ( A vH B ) <-> ( ( x vH B ) C_ ( x vH B ) /\ ( x vH B ) C_ ( A vH B ) ) ) | 
						
							| 48 |  | ssin |  |-  ( ( ( x vH B ) C_ ( x vH B ) /\ ( x vH B ) C_ ( A vH B ) ) <-> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) | 
						
							| 49 | 47 48 | bitri |  |-  ( ( x vH B ) C_ ( A vH B ) <-> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) | 
						
							| 50 | 45 49 | bitrdi |  |-  ( x e. CH -> ( x C_ ( A vH B ) <-> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) ) | 
						
							| 51 | 50 | biimpa |  |-  ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) | 
						
							| 52 |  | inss1 |  |-  ( ( x vH B ) i^i ( A vH B ) ) C_ ( x vH B ) | 
						
							| 53 | 51 52 | jctil |  |-  ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( x vH B ) /\ ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) ) | 
						
							| 54 |  | eqss |  |-  ( ( ( x vH B ) i^i ( A vH B ) ) = ( x vH B ) <-> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( x vH B ) /\ ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) ) | 
						
							| 55 | 53 54 | sylibr |  |-  ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( x vH B ) i^i ( A vH B ) ) = ( x vH B ) ) | 
						
							| 56 | 55 | sseq1d |  |-  ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 57 | 2 22 | mpan2 |  |-  ( x e. CH -> ( x vH B ) e. CH ) | 
						
							| 58 | 57 1 24 | sylancl |  |-  ( x e. CH -> ( ( x vH B ) i^i A ) e. CH ) | 
						
							| 59 | 2 58 26 | sylancr |  |-  ( x e. CH -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) | 
						
							| 60 | 59 | biantrud |  |-  ( x e. CH -> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) | 
						
							| 61 |  | chjcl |  |-  ( ( ( ( x vH B ) i^i A ) e. CH /\ B e. CH ) -> ( ( ( x vH B ) i^i A ) vH B ) e. CH ) | 
						
							| 62 | 58 2 61 | sylancl |  |-  ( x e. CH -> ( ( ( x vH B ) i^i A ) vH B ) e. CH ) | 
						
							| 63 |  | chlub |  |-  ( ( x e. CH /\ B e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) e. CH ) -> ( ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 64 | 2 63 | mp3an2 |  |-  ( ( x e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) e. CH ) -> ( ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 65 | 62 64 | mpdan |  |-  ( x e. CH -> ( ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 66 | 60 65 | bitrd |  |-  ( x e. CH -> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 68 | 56 67 | bitr4d |  |-  ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 69 | 68 | pm5.74da |  |-  ( x e. CH -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) | 
						
							| 70 | 5 69 | syl |  |-  ( x e. HAtoms -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) | 
						
							| 71 | 70 | ralbiia |  |-  ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 72 | 39 71 | bitri |  |-  ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |