| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumdmdi.1 |
|- A e. CH |
| 2 |
|
sumdmdi.2 |
|- B e. CH |
| 3 |
|
dmdi4 |
|- ( ( A e. CH /\ B e. CH /\ x e. CH ) -> ( A MH* B -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 4 |
1 2 3
|
mp3an12 |
|- ( x e. CH -> ( A MH* B -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 5 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
| 6 |
4 5
|
syl11 |
|- ( A MH* B -> ( x e. HAtoms -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 7 |
6
|
a1dd |
|- ( A MH* B -> ( x e. HAtoms -> ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) |
| 8 |
7
|
ralrimiv |
|- ( A MH* B -> A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 9 |
|
chjcom |
|- ( ( B e. CH /\ x e. CH ) -> ( B vH x ) = ( x vH B ) ) |
| 10 |
2 5 9
|
sylancr |
|- ( x e. HAtoms -> ( B vH x ) = ( x vH B ) ) |
| 11 |
10
|
ineq1d |
|- ( x e. HAtoms -> ( ( B vH x ) i^i ( B vH A ) ) = ( ( x vH B ) i^i ( B vH A ) ) ) |
| 12 |
1 2
|
chjcomi |
|- ( A vH B ) = ( B vH A ) |
| 13 |
12
|
ineq2i |
|- ( ( x vH B ) i^i ( A vH B ) ) = ( ( x vH B ) i^i ( B vH A ) ) |
| 14 |
11 13
|
eqtr4di |
|- ( x e. HAtoms -> ( ( B vH x ) i^i ( B vH A ) ) = ( ( x vH B ) i^i ( A vH B ) ) ) |
| 15 |
14
|
adantr |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( B vH x ) i^i ( B vH A ) ) = ( ( x vH B ) i^i ( A vH B ) ) ) |
| 16 |
12
|
sseq2i |
|- ( x C_ ( A vH B ) <-> x C_ ( B vH A ) ) |
| 17 |
16
|
notbii |
|- ( -. x C_ ( A vH B ) <-> -. x C_ ( B vH A ) ) |
| 18 |
2 1
|
atabs2i |
|- ( x e. HAtoms -> ( -. x C_ ( B vH A ) -> ( ( B vH x ) i^i ( B vH A ) ) = B ) ) |
| 19 |
18
|
imp |
|- ( ( x e. HAtoms /\ -. x C_ ( B vH A ) ) -> ( ( B vH x ) i^i ( B vH A ) ) = B ) |
| 20 |
17 19
|
sylan2b |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( B vH x ) i^i ( B vH A ) ) = B ) |
| 21 |
15 20
|
eqtr3d |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( x vH B ) i^i ( A vH B ) ) = B ) |
| 22 |
|
chjcl |
|- ( ( x e. CH /\ B e. CH ) -> ( x vH B ) e. CH ) |
| 23 |
5 2 22
|
sylancl |
|- ( x e. HAtoms -> ( x vH B ) e. CH ) |
| 24 |
|
chincl |
|- ( ( ( x vH B ) e. CH /\ A e. CH ) -> ( ( x vH B ) i^i A ) e. CH ) |
| 25 |
23 1 24
|
sylancl |
|- ( x e. HAtoms -> ( ( x vH B ) i^i A ) e. CH ) |
| 26 |
|
chub2 |
|- ( ( B e. CH /\ ( ( x vH B ) i^i A ) e. CH ) -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
| 27 |
2 25 26
|
sylancr |
|- ( x e. HAtoms -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
| 28 |
27
|
adantr |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
| 29 |
21 28
|
eqsstrd |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
| 30 |
29
|
ex |
|- ( x e. HAtoms -> ( -. x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 31 |
30
|
biantrud |
|- ( x e. HAtoms -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) /\ ( -. x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) ) |
| 32 |
|
pm4.83 |
|- ( ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) /\ ( -. x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) <-> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
| 33 |
31 32
|
bitrdi |
|- ( x e. HAtoms -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 34 |
33
|
ralbiia |
|- ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
| 35 |
1 2
|
sumdmdlem2 |
|- ( A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> ( A +H B ) = ( A vH B ) ) |
| 36 |
34 35
|
sylbi |
|- ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) -> ( A +H B ) = ( A vH B ) ) |
| 37 |
1 2
|
sumdmdi |
|- ( ( A +H B ) = ( A vH B ) <-> A MH* B ) |
| 38 |
36 37
|
sylib |
|- ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) -> A MH* B ) |
| 39 |
8 38
|
impbii |
|- ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 40 |
2 1
|
chub2i |
|- B C_ ( A vH B ) |
| 41 |
40
|
biantru |
|- ( x C_ ( A vH B ) <-> ( x C_ ( A vH B ) /\ B C_ ( A vH B ) ) ) |
| 42 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
| 43 |
|
chlub |
|- ( ( x e. CH /\ B e. CH /\ ( A vH B ) e. CH ) -> ( ( x C_ ( A vH B ) /\ B C_ ( A vH B ) ) <-> ( x vH B ) C_ ( A vH B ) ) ) |
| 44 |
2 42 43
|
mp3an23 |
|- ( x e. CH -> ( ( x C_ ( A vH B ) /\ B C_ ( A vH B ) ) <-> ( x vH B ) C_ ( A vH B ) ) ) |
| 45 |
41 44
|
bitrid |
|- ( x e. CH -> ( x C_ ( A vH B ) <-> ( x vH B ) C_ ( A vH B ) ) ) |
| 46 |
|
ssid |
|- ( x vH B ) C_ ( x vH B ) |
| 47 |
46
|
biantrur |
|- ( ( x vH B ) C_ ( A vH B ) <-> ( ( x vH B ) C_ ( x vH B ) /\ ( x vH B ) C_ ( A vH B ) ) ) |
| 48 |
|
ssin |
|- ( ( ( x vH B ) C_ ( x vH B ) /\ ( x vH B ) C_ ( A vH B ) ) <-> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) |
| 49 |
47 48
|
bitri |
|- ( ( x vH B ) C_ ( A vH B ) <-> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) |
| 50 |
45 49
|
bitrdi |
|- ( x e. CH -> ( x C_ ( A vH B ) <-> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) ) |
| 51 |
50
|
biimpa |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) |
| 52 |
|
inss1 |
|- ( ( x vH B ) i^i ( A vH B ) ) C_ ( x vH B ) |
| 53 |
51 52
|
jctil |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( x vH B ) /\ ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) ) |
| 54 |
|
eqss |
|- ( ( ( x vH B ) i^i ( A vH B ) ) = ( x vH B ) <-> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( x vH B ) /\ ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) ) |
| 55 |
53 54
|
sylibr |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( x vH B ) i^i ( A vH B ) ) = ( x vH B ) ) |
| 56 |
55
|
sseq1d |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 57 |
2 22
|
mpan2 |
|- ( x e. CH -> ( x vH B ) e. CH ) |
| 58 |
57 1 24
|
sylancl |
|- ( x e. CH -> ( ( x vH B ) i^i A ) e. CH ) |
| 59 |
2 58 26
|
sylancr |
|- ( x e. CH -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
| 60 |
59
|
biantrud |
|- ( x e. CH -> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) |
| 61 |
|
chjcl |
|- ( ( ( ( x vH B ) i^i A ) e. CH /\ B e. CH ) -> ( ( ( x vH B ) i^i A ) vH B ) e. CH ) |
| 62 |
58 2 61
|
sylancl |
|- ( x e. CH -> ( ( ( x vH B ) i^i A ) vH B ) e. CH ) |
| 63 |
|
chlub |
|- ( ( x e. CH /\ B e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) e. CH ) -> ( ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 64 |
2 63
|
mp3an2 |
|- ( ( x e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) e. CH ) -> ( ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 65 |
62 64
|
mpdan |
|- ( x e. CH -> ( ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 66 |
60 65
|
bitrd |
|- ( x e. CH -> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 67 |
66
|
adantr |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 68 |
56 67
|
bitr4d |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 69 |
68
|
pm5.74da |
|- ( x e. CH -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) |
| 70 |
5 69
|
syl |
|- ( x e. HAtoms -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) |
| 71 |
70
|
ralbiia |
|- ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
| 72 |
39 71
|
bitri |
|- ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |