Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
|- A e. CH |
2 |
|
sumdmdi.2 |
|- B e. CH |
3 |
|
dmdi4 |
|- ( ( A e. CH /\ B e. CH /\ x e. CH ) -> ( A MH* B -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
4 |
1 2 3
|
mp3an12 |
|- ( x e. CH -> ( A MH* B -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
5 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
6 |
4 5
|
syl11 |
|- ( A MH* B -> ( x e. HAtoms -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
7 |
6
|
a1dd |
|- ( A MH* B -> ( x e. HAtoms -> ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) |
8 |
7
|
ralrimiv |
|- ( A MH* B -> A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
9 |
|
chjcom |
|- ( ( B e. CH /\ x e. CH ) -> ( B vH x ) = ( x vH B ) ) |
10 |
2 5 9
|
sylancr |
|- ( x e. HAtoms -> ( B vH x ) = ( x vH B ) ) |
11 |
10
|
ineq1d |
|- ( x e. HAtoms -> ( ( B vH x ) i^i ( B vH A ) ) = ( ( x vH B ) i^i ( B vH A ) ) ) |
12 |
1 2
|
chjcomi |
|- ( A vH B ) = ( B vH A ) |
13 |
12
|
ineq2i |
|- ( ( x vH B ) i^i ( A vH B ) ) = ( ( x vH B ) i^i ( B vH A ) ) |
14 |
11 13
|
eqtr4di |
|- ( x e. HAtoms -> ( ( B vH x ) i^i ( B vH A ) ) = ( ( x vH B ) i^i ( A vH B ) ) ) |
15 |
14
|
adantr |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( B vH x ) i^i ( B vH A ) ) = ( ( x vH B ) i^i ( A vH B ) ) ) |
16 |
12
|
sseq2i |
|- ( x C_ ( A vH B ) <-> x C_ ( B vH A ) ) |
17 |
16
|
notbii |
|- ( -. x C_ ( A vH B ) <-> -. x C_ ( B vH A ) ) |
18 |
2 1
|
atabs2i |
|- ( x e. HAtoms -> ( -. x C_ ( B vH A ) -> ( ( B vH x ) i^i ( B vH A ) ) = B ) ) |
19 |
18
|
imp |
|- ( ( x e. HAtoms /\ -. x C_ ( B vH A ) ) -> ( ( B vH x ) i^i ( B vH A ) ) = B ) |
20 |
17 19
|
sylan2b |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( B vH x ) i^i ( B vH A ) ) = B ) |
21 |
15 20
|
eqtr3d |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( x vH B ) i^i ( A vH B ) ) = B ) |
22 |
|
chjcl |
|- ( ( x e. CH /\ B e. CH ) -> ( x vH B ) e. CH ) |
23 |
5 2 22
|
sylancl |
|- ( x e. HAtoms -> ( x vH B ) e. CH ) |
24 |
|
chincl |
|- ( ( ( x vH B ) e. CH /\ A e. CH ) -> ( ( x vH B ) i^i A ) e. CH ) |
25 |
23 1 24
|
sylancl |
|- ( x e. HAtoms -> ( ( x vH B ) i^i A ) e. CH ) |
26 |
|
chub2 |
|- ( ( B e. CH /\ ( ( x vH B ) i^i A ) e. CH ) -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
27 |
2 25 26
|
sylancr |
|- ( x e. HAtoms -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
28 |
27
|
adantr |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
29 |
21 28
|
eqsstrd |
|- ( ( x e. HAtoms /\ -. x C_ ( A vH B ) ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
30 |
29
|
ex |
|- ( x e. HAtoms -> ( -. x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
31 |
30
|
biantrud |
|- ( x e. HAtoms -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) /\ ( -. x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) ) |
32 |
|
pm4.83 |
|- ( ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) /\ ( -. x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) <-> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
33 |
31 32
|
bitrdi |
|- ( x e. HAtoms -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
34 |
33
|
ralbiia |
|- ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
35 |
1 2
|
sumdmdlem2 |
|- ( A. x e. HAtoms ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> ( A +H B ) = ( A vH B ) ) |
36 |
34 35
|
sylbi |
|- ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) -> ( A +H B ) = ( A vH B ) ) |
37 |
1 2
|
sumdmdi |
|- ( ( A +H B ) = ( A vH B ) <-> A MH* B ) |
38 |
36 37
|
sylib |
|- ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) -> A MH* B ) |
39 |
8 38
|
impbii |
|- ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
40 |
2 1
|
chub2i |
|- B C_ ( A vH B ) |
41 |
40
|
biantru |
|- ( x C_ ( A vH B ) <-> ( x C_ ( A vH B ) /\ B C_ ( A vH B ) ) ) |
42 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
43 |
|
chlub |
|- ( ( x e. CH /\ B e. CH /\ ( A vH B ) e. CH ) -> ( ( x C_ ( A vH B ) /\ B C_ ( A vH B ) ) <-> ( x vH B ) C_ ( A vH B ) ) ) |
44 |
2 42 43
|
mp3an23 |
|- ( x e. CH -> ( ( x C_ ( A vH B ) /\ B C_ ( A vH B ) ) <-> ( x vH B ) C_ ( A vH B ) ) ) |
45 |
41 44
|
syl5bb |
|- ( x e. CH -> ( x C_ ( A vH B ) <-> ( x vH B ) C_ ( A vH B ) ) ) |
46 |
|
ssid |
|- ( x vH B ) C_ ( x vH B ) |
47 |
46
|
biantrur |
|- ( ( x vH B ) C_ ( A vH B ) <-> ( ( x vH B ) C_ ( x vH B ) /\ ( x vH B ) C_ ( A vH B ) ) ) |
48 |
|
ssin |
|- ( ( ( x vH B ) C_ ( x vH B ) /\ ( x vH B ) C_ ( A vH B ) ) <-> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) |
49 |
47 48
|
bitri |
|- ( ( x vH B ) C_ ( A vH B ) <-> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) |
50 |
45 49
|
bitrdi |
|- ( x e. CH -> ( x C_ ( A vH B ) <-> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) ) |
51 |
50
|
biimpa |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) |
52 |
|
inss1 |
|- ( ( x vH B ) i^i ( A vH B ) ) C_ ( x vH B ) |
53 |
51 52
|
jctil |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( x vH B ) /\ ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) ) |
54 |
|
eqss |
|- ( ( ( x vH B ) i^i ( A vH B ) ) = ( x vH B ) <-> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( x vH B ) /\ ( x vH B ) C_ ( ( x vH B ) i^i ( A vH B ) ) ) ) |
55 |
53 54
|
sylibr |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( x vH B ) i^i ( A vH B ) ) = ( x vH B ) ) |
56 |
55
|
sseq1d |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
57 |
2 22
|
mpan2 |
|- ( x e. CH -> ( x vH B ) e. CH ) |
58 |
57 1 24
|
sylancl |
|- ( x e. CH -> ( ( x vH B ) i^i A ) e. CH ) |
59 |
2 58 26
|
sylancr |
|- ( x e. CH -> B C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
60 |
59
|
biantrud |
|- ( x e. CH -> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) |
61 |
|
chjcl |
|- ( ( ( ( x vH B ) i^i A ) e. CH /\ B e. CH ) -> ( ( ( x vH B ) i^i A ) vH B ) e. CH ) |
62 |
58 2 61
|
sylancl |
|- ( x e. CH -> ( ( ( x vH B ) i^i A ) vH B ) e. CH ) |
63 |
|
chlub |
|- ( ( x e. CH /\ B e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) e. CH ) -> ( ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
64 |
2 63
|
mp3an2 |
|- ( ( x e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) e. CH ) -> ( ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
65 |
62 64
|
mpdan |
|- ( x e. CH -> ( ( x C_ ( ( ( x vH B ) i^i A ) vH B ) /\ B C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
66 |
60 65
|
bitrd |
|- ( x e. CH -> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
67 |
66
|
adantr |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( x C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( x vH B ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
68 |
56 67
|
bitr4d |
|- ( ( x e. CH /\ x C_ ( A vH B ) ) -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
69 |
68
|
pm5.74da |
|- ( x e. CH -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) |
70 |
5 69
|
syl |
|- ( x e. HAtoms -> ( ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) ) |
71 |
70
|
ralbiia |
|- ( A. x e. HAtoms ( x C_ ( A vH B ) -> ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
72 |
39 71
|
bitri |
|- ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |