| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmdbr4 |  |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 2 | 1 | biimpd |  |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B -> A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 3 |  | oveq1 |  |-  ( x = C -> ( x vH B ) = ( C vH B ) ) | 
						
							| 4 | 3 | ineq1d |  |-  ( x = C -> ( ( x vH B ) i^i ( A vH B ) ) = ( ( C vH B ) i^i ( A vH B ) ) ) | 
						
							| 5 | 3 | ineq1d |  |-  ( x = C -> ( ( x vH B ) i^i A ) = ( ( C vH B ) i^i A ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( x = C -> ( ( ( x vH B ) i^i A ) vH B ) = ( ( ( C vH B ) i^i A ) vH B ) ) | 
						
							| 7 | 4 6 | sseq12d |  |-  ( x = C -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( ( C vH B ) i^i ( A vH B ) ) C_ ( ( ( C vH B ) i^i A ) vH B ) ) ) | 
						
							| 8 | 7 | rspcv |  |-  ( C e. CH -> ( A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> ( ( C vH B ) i^i ( A vH B ) ) C_ ( ( ( C vH B ) i^i A ) vH B ) ) ) | 
						
							| 9 | 2 8 | sylan9 |  |-  ( ( ( A e. CH /\ B e. CH ) /\ C e. CH ) -> ( A MH* B -> ( ( C vH B ) i^i ( A vH B ) ) C_ ( ( ( C vH B ) i^i A ) vH B ) ) ) | 
						
							| 10 | 9 | 3impa |  |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A MH* B -> ( ( C vH B ) i^i ( A vH B ) ) C_ ( ( ( C vH B ) i^i A ) vH B ) ) ) |