| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumdmdi.1 |  |-  A e. CH | 
						
							| 2 |  | sumdmdi.2 |  |-  B e. CH | 
						
							| 3 |  | dmdbr3 |  |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) ) | 
						
							| 4 | 1 2 3 | mp2an |  |-  ( A MH* B <-> A. x e. CH ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) | 
						
							| 5 |  | chabs2 |  |-  ( ( x e. CH /\ B e. CH ) -> ( x i^i ( x vH B ) ) = x ) | 
						
							| 6 | 2 5 | mpan2 |  |-  ( x e. CH -> ( x i^i ( x vH B ) ) = x ) | 
						
							| 7 | 6 | ineq2d |  |-  ( x e. CH -> ( ( A vH B ) i^i ( x i^i ( x vH B ) ) ) = ( ( A vH B ) i^i x ) ) | 
						
							| 8 |  | incom |  |-  ( ( A vH B ) i^i ( x i^i ( x vH B ) ) ) = ( ( x i^i ( x vH B ) ) i^i ( A vH B ) ) | 
						
							| 9 |  | inass |  |-  ( ( x i^i ( x vH B ) ) i^i ( A vH B ) ) = ( x i^i ( ( x vH B ) i^i ( A vH B ) ) ) | 
						
							| 10 |  | incom |  |-  ( x i^i ( ( x vH B ) i^i ( A vH B ) ) ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) | 
						
							| 11 | 8 9 10 | 3eqtri |  |-  ( ( A vH B ) i^i ( x i^i ( x vH B ) ) ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) | 
						
							| 12 | 7 11 | eqtr3di |  |-  ( x e. CH -> ( ( A vH B ) i^i x ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( x e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) -> ( ( A vH B ) i^i x ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) ) | 
						
							| 14 |  | ineq1 |  |-  ( ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) -> ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( x e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) -> ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) ) | 
						
							| 16 | 13 15 | eqtr4d |  |-  ( ( x e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) -> ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) | 
						
							| 17 | 16 | ralimiaa |  |-  ( A. x e. CH ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) -> A. x e. CH ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) | 
						
							| 18 | 4 17 | sylbi |  |-  ( A MH* B -> A. x e. CH ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) | 
						
							| 19 |  | atelch |  |-  ( x e. HAtoms -> x e. CH ) | 
						
							| 20 | 19 | imim1i |  |-  ( ( x e. CH -> ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) -> ( x e. HAtoms -> ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) ) | 
						
							| 21 | 20 | ralimi2 |  |-  ( A. x e. CH ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) | 
						
							| 22 | 18 21 | syl |  |-  ( A MH* B -> A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) | 
						
							| 23 |  | inss1 |  |-  ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) | 
						
							| 24 |  | sseq1 |  |-  ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 25 | 23 24 | mpbiri |  |-  ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) | 
						
							| 26 |  | incom |  |-  ( ( A vH B ) i^i x ) = ( x i^i ( A vH B ) ) | 
						
							| 27 |  | dfss2 |  |-  ( x C_ ( A vH B ) <-> ( x i^i ( A vH B ) ) = x ) | 
						
							| 28 | 27 | biimpi |  |-  ( x C_ ( A vH B ) -> ( x i^i ( A vH B ) ) = x ) | 
						
							| 29 | 26 28 | eqtrid |  |-  ( x C_ ( A vH B ) -> ( ( A vH B ) i^i x ) = x ) | 
						
							| 30 | 29 | sseq1d |  |-  ( x C_ ( A vH B ) -> ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 31 | 25 30 | syl5ibcom |  |-  ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 32 | 31 | ralimi |  |-  ( A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 33 | 1 2 | dmdbr5ati |  |-  ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) | 
						
							| 34 | 32 33 | sylibr |  |-  ( A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> A MH* B ) | 
						
							| 35 | 22 34 | impbii |  |-  ( A MH* B <-> A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) |