Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
|- A e. CH |
2 |
|
sumdmdi.2 |
|- B e. CH |
3 |
|
dmdbr3 |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) ) |
4 |
1 2 3
|
mp2an |
|- ( A MH* B <-> A. x e. CH ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) |
5 |
|
chabs2 |
|- ( ( x e. CH /\ B e. CH ) -> ( x i^i ( x vH B ) ) = x ) |
6 |
2 5
|
mpan2 |
|- ( x e. CH -> ( x i^i ( x vH B ) ) = x ) |
7 |
6
|
ineq2d |
|- ( x e. CH -> ( ( A vH B ) i^i ( x i^i ( x vH B ) ) ) = ( ( A vH B ) i^i x ) ) |
8 |
|
incom |
|- ( ( A vH B ) i^i ( x i^i ( x vH B ) ) ) = ( ( x i^i ( x vH B ) ) i^i ( A vH B ) ) |
9 |
|
inass |
|- ( ( x i^i ( x vH B ) ) i^i ( A vH B ) ) = ( x i^i ( ( x vH B ) i^i ( A vH B ) ) ) |
10 |
|
incom |
|- ( x i^i ( ( x vH B ) i^i ( A vH B ) ) ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) |
11 |
8 9 10
|
3eqtri |
|- ( ( A vH B ) i^i ( x i^i ( x vH B ) ) ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) |
12 |
7 11
|
eqtr3di |
|- ( x e. CH -> ( ( A vH B ) i^i x ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) ) |
13 |
12
|
adantr |
|- ( ( x e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) -> ( ( A vH B ) i^i x ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) ) |
14 |
|
ineq1 |
|- ( ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) -> ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) ) |
15 |
14
|
adantl |
|- ( ( x e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) -> ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) = ( ( ( x vH B ) i^i ( A vH B ) ) i^i x ) ) |
16 |
13 15
|
eqtr4d |
|- ( ( x e. CH /\ ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) ) -> ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) |
17 |
16
|
ralimiaa |
|- ( A. x e. CH ( ( ( x vH B ) i^i A ) vH B ) = ( ( x vH B ) i^i ( A vH B ) ) -> A. x e. CH ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) |
18 |
4 17
|
sylbi |
|- ( A MH* B -> A. x e. CH ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) |
19 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
20 |
19
|
imim1i |
|- ( ( x e. CH -> ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) -> ( x e. HAtoms -> ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) ) |
21 |
20
|
ralimi2 |
|- ( A. x e. CH ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) |
22 |
18 21
|
syl |
|- ( A MH* B -> A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) |
23 |
|
inss1 |
|- ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) |
24 |
|
sseq1 |
|- ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
25 |
23 24
|
mpbiri |
|- ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
26 |
|
incom |
|- ( ( A vH B ) i^i x ) = ( x i^i ( A vH B ) ) |
27 |
|
df-ss |
|- ( x C_ ( A vH B ) <-> ( x i^i ( A vH B ) ) = x ) |
28 |
27
|
biimpi |
|- ( x C_ ( A vH B ) -> ( x i^i ( A vH B ) ) = x ) |
29 |
26 28
|
eqtrid |
|- ( x C_ ( A vH B ) -> ( ( A vH B ) i^i x ) = x ) |
30 |
29
|
sseq1d |
|- ( x C_ ( A vH B ) -> ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
31 |
25 30
|
syl5ibcom |
|- ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
32 |
31
|
ralimi |
|- ( A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
33 |
1 2
|
dmdbr5ati |
|- ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
34 |
32 33
|
sylibr |
|- ( A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> A MH* B ) |
35 |
22 34
|
impbii |
|- ( A MH* B <-> A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) |