Metamath Proof Explorer


Theorem dmdbr7ati

Description: Dual modular pair property in terms of atoms. (Contributed by NM, 18-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1
|- A e. CH
sumdmdi.2
|- B e. CH
Assertion dmdbr7ati
|- ( A MH* B <-> A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) )

Proof

Step Hyp Ref Expression
1 sumdmdi.1
 |-  A e. CH
2 sumdmdi.2
 |-  B e. CH
3 1 2 dmdbr6ati
 |-  ( A MH* B <-> A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) )
4 inss1
 |-  ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B )
5 sseq1
 |-  ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) )
6 4 5 mpbiri
 |-  ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) )
7 6 ralimi
 |-  ( A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) )
8 3 7 sylbi
 |-  ( A MH* B -> A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) )
9 sseqin2
 |-  ( x C_ ( A vH B ) <-> ( ( A vH B ) i^i x ) = x )
10 9 biimpi
 |-  ( x C_ ( A vH B ) -> ( ( A vH B ) i^i x ) = x )
11 10 sseq1d
 |-  ( x C_ ( A vH B ) -> ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) )
12 11 biimpcd
 |-  ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) )
13 12 ralimi
 |-  ( A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) )
14 1 2 dmdbr5ati
 |-  ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) )
15 13 14 sylibr
 |-  ( A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> A MH* B )
16 8 15 impbii
 |-  ( A MH* B <-> A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) )