Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
|- A e. CH |
2 |
|
sumdmdi.2 |
|- B e. CH |
3 |
1 2
|
dmdbr6ati |
|- ( A MH* B <-> A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) ) |
4 |
|
inss1 |
|- ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) |
5 |
|
sseq1 |
|- ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
6 |
4 5
|
mpbiri |
|- ( ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
7 |
6
|
ralimi |
|- ( A. x e. HAtoms ( ( A vH B ) i^i x ) = ( ( ( ( x vH B ) i^i A ) vH B ) i^i x ) -> A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
8 |
3 7
|
sylbi |
|- ( A MH* B -> A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |
9 |
|
sseqin2 |
|- ( x C_ ( A vH B ) <-> ( ( A vH B ) i^i x ) = x ) |
10 |
9
|
biimpi |
|- ( x C_ ( A vH B ) -> ( ( A vH B ) i^i x ) = x ) |
11 |
10
|
sseq1d |
|- ( x C_ ( A vH B ) -> ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
12 |
11
|
biimpcd |
|- ( ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
13 |
12
|
ralimi |
|- ( A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
14 |
1 2
|
dmdbr5ati |
|- ( A MH* B <-> A. x e. HAtoms ( x C_ ( A vH B ) -> x C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
15 |
13 14
|
sylibr |
|- ( A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> A MH* B ) |
16 |
8 15
|
impbii |
|- ( A MH* B <-> A. x e. HAtoms ( ( A vH B ) i^i x ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) |