Metamath Proof Explorer


Theorem dmdbr7ati

Description: Dual modular pair property in terms of atoms. (Contributed by NM, 18-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 A C
sumdmdi.2 B C
Assertion dmdbr7ati A 𝑀 * B x HAtoms A B x x B A B

Proof

Step Hyp Ref Expression
1 sumdmdi.1 A C
2 sumdmdi.2 B C
3 1 2 dmdbr6ati A 𝑀 * B x HAtoms A B x = x B A B x
4 inss1 x B A B x x B A B
5 sseq1 A B x = x B A B x A B x x B A B x B A B x x B A B
6 4 5 mpbiri A B x = x B A B x A B x x B A B
7 6 ralimi x HAtoms A B x = x B A B x x HAtoms A B x x B A B
8 3 7 sylbi A 𝑀 * B x HAtoms A B x x B A B
9 sseqin2 x A B A B x = x
10 9 biimpi x A B A B x = x
11 10 sseq1d x A B A B x x B A B x x B A B
12 11 biimpcd A B x x B A B x A B x x B A B
13 12 ralimi x HAtoms A B x x B A B x HAtoms x A B x x B A B
14 1 2 dmdbr5ati A 𝑀 * B x HAtoms x A B x x B A B
15 13 14 sylibr x HAtoms A B x x B A B A 𝑀 * B
16 8 15 impbii A 𝑀 * B x HAtoms A B x x B A B