Metamath Proof Explorer


Theorem dmdbr5ati

Description: Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 A C
sumdmdi.2 B C
Assertion dmdbr5ati A 𝑀 * B x HAtoms x A B x x B A B

Proof

Step Hyp Ref Expression
1 sumdmdi.1 A C
2 sumdmdi.2 B C
3 dmdi4 A C B C x C A 𝑀 * B x B A B x B A B
4 1 2 3 mp3an12 x C A 𝑀 * B x B A B x B A B
5 atelch x HAtoms x C
6 4 5 syl11 A 𝑀 * B x HAtoms x B A B x B A B
7 6 a1dd A 𝑀 * B x HAtoms x A B x B A B x B A B
8 7 ralrimiv A 𝑀 * B x HAtoms x A B x B A B x B A B
9 chjcom B C x C B x = x B
10 2 5 9 sylancr x HAtoms B x = x B
11 10 ineq1d x HAtoms B x B A = x B B A
12 1 2 chjcomi A B = B A
13 12 ineq2i x B A B = x B B A
14 11 13 eqtr4di x HAtoms B x B A = x B A B
15 14 adantr x HAtoms ¬ x A B B x B A = x B A B
16 12 sseq2i x A B x B A
17 16 notbii ¬ x A B ¬ x B A
18 2 1 atabs2i x HAtoms ¬ x B A B x B A = B
19 18 imp x HAtoms ¬ x B A B x B A = B
20 17 19 sylan2b x HAtoms ¬ x A B B x B A = B
21 15 20 eqtr3d x HAtoms ¬ x A B x B A B = B
22 chjcl x C B C x B C
23 5 2 22 sylancl x HAtoms x B C
24 chincl x B C A C x B A C
25 23 1 24 sylancl x HAtoms x B A C
26 chub2 B C x B A C B x B A B
27 2 25 26 sylancr x HAtoms B x B A B
28 27 adantr x HAtoms ¬ x A B B x B A B
29 21 28 eqsstrd x HAtoms ¬ x A B x B A B x B A B
30 29 ex x HAtoms ¬ x A B x B A B x B A B
31 30 biantrud x HAtoms x A B x B A B x B A B x A B x B A B x B A B ¬ x A B x B A B x B A B
32 pm4.83 x A B x B A B x B A B ¬ x A B x B A B x B A B x B A B x B A B
33 31 32 bitrdi x HAtoms x A B x B A B x B A B x B A B x B A B
34 33 ralbiia x HAtoms x A B x B A B x B A B x HAtoms x B A B x B A B
35 1 2 sumdmdlem2 x HAtoms x B A B x B A B A + B = A B
36 34 35 sylbi x HAtoms x A B x B A B x B A B A + B = A B
37 1 2 sumdmdi A + B = A B A 𝑀 * B
38 36 37 sylib x HAtoms x A B x B A B x B A B A 𝑀 * B
39 8 38 impbii A 𝑀 * B x HAtoms x A B x B A B x B A B
40 2 1 chub2i B A B
41 40 biantru x A B x A B B A B
42 1 2 chjcli A B C
43 chlub x C B C A B C x A B B A B x B A B
44 2 42 43 mp3an23 x C x A B B A B x B A B
45 41 44 syl5bb x C x A B x B A B
46 ssid x B x B
47 46 biantrur x B A B x B x B x B A B
48 ssin x B x B x B A B x B x B A B
49 47 48 bitri x B A B x B x B A B
50 45 49 bitrdi x C x A B x B x B A B
51 50 biimpa x C x A B x B x B A B
52 inss1 x B A B x B
53 51 52 jctil x C x A B x B A B x B x B x B A B
54 eqss x B A B = x B x B A B x B x B x B A B
55 53 54 sylibr x C x A B x B A B = x B
56 55 sseq1d x C x A B x B A B x B A B x B x B A B
57 2 22 mpan2 x C x B C
58 57 1 24 sylancl x C x B A C
59 2 58 26 sylancr x C B x B A B
60 59 biantrud x C x x B A B x x B A B B x B A B
61 chjcl x B A C B C x B A B C
62 58 2 61 sylancl x C x B A B C
63 chlub x C B C x B A B C x x B A B B x B A B x B x B A B
64 2 63 mp3an2 x C x B A B C x x B A B B x B A B x B x B A B
65 62 64 mpdan x C x x B A B B x B A B x B x B A B
66 60 65 bitrd x C x x B A B x B x B A B
67 66 adantr x C x A B x x B A B x B x B A B
68 56 67 bitr4d x C x A B x B A B x B A B x x B A B
69 68 pm5.74da x C x A B x B A B x B A B x A B x x B A B
70 5 69 syl x HAtoms x A B x B A B x B A B x A B x x B A B
71 70 ralbiia x HAtoms x A B x B A B x B A B x HAtoms x A B x x B A B
72 39 71 bitri A 𝑀 * B x HAtoms x A B x x B A B