Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
|
2 |
|
sumdmdi.2 |
|
3 |
|
dmdi4 |
|
4 |
1 2 3
|
mp3an12 |
|
5 |
|
atelch |
|
6 |
4 5
|
syl11 |
|
7 |
6
|
a1dd |
|
8 |
7
|
ralrimiv |
|
9 |
|
chjcom |
|
10 |
2 5 9
|
sylancr |
|
11 |
10
|
ineq1d |
|
12 |
1 2
|
chjcomi |
|
13 |
12
|
ineq2i |
|
14 |
11 13
|
eqtr4di |
|
15 |
14
|
adantr |
|
16 |
12
|
sseq2i |
|
17 |
16
|
notbii |
|
18 |
2 1
|
atabs2i |
|
19 |
18
|
imp |
|
20 |
17 19
|
sylan2b |
|
21 |
15 20
|
eqtr3d |
|
22 |
|
chjcl |
|
23 |
5 2 22
|
sylancl |
|
24 |
|
chincl |
|
25 |
23 1 24
|
sylancl |
|
26 |
|
chub2 |
|
27 |
2 25 26
|
sylancr |
|
28 |
27
|
adantr |
|
29 |
21 28
|
eqsstrd |
|
30 |
29
|
ex |
|
31 |
30
|
biantrud |
|
32 |
|
pm4.83 |
|
33 |
31 32
|
bitrdi |
|
34 |
33
|
ralbiia |
|
35 |
1 2
|
sumdmdlem2 |
|
36 |
34 35
|
sylbi |
|
37 |
1 2
|
sumdmdi |
|
38 |
36 37
|
sylib |
|
39 |
8 38
|
impbii |
|
40 |
2 1
|
chub2i |
|
41 |
40
|
biantru |
|
42 |
1 2
|
chjcli |
|
43 |
|
chlub |
|
44 |
2 42 43
|
mp3an23 |
|
45 |
41 44
|
syl5bb |
|
46 |
|
ssid |
|
47 |
46
|
biantrur |
|
48 |
|
ssin |
|
49 |
47 48
|
bitri |
|
50 |
45 49
|
bitrdi |
|
51 |
50
|
biimpa |
|
52 |
|
inss1 |
|
53 |
51 52
|
jctil |
|
54 |
|
eqss |
|
55 |
53 54
|
sylibr |
|
56 |
55
|
sseq1d |
|
57 |
2 22
|
mpan2 |
|
58 |
57 1 24
|
sylancl |
|
59 |
2 58 26
|
sylancr |
|
60 |
59
|
biantrud |
|
61 |
|
chjcl |
|
62 |
58 2 61
|
sylancl |
|
63 |
|
chlub |
|
64 |
2 63
|
mp3an2 |
|
65 |
62 64
|
mpdan |
|
66 |
60 65
|
bitrd |
|
67 |
66
|
adantr |
|
68 |
56 67
|
bitr4d |
|
69 |
68
|
pm5.74da |
|
70 |
5 69
|
syl |
|
71 |
70
|
ralbiia |
|
72 |
39 71
|
bitri |
|