Metamath Proof Explorer


Theorem sumdmdlem2

Description: Lemma for sumdmdi . (Contributed by NM, 23-Dec-2004) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 AC
sumdmdi.2 BC
Assertion sumdmdlem2 xHAtomsxBABxBABA+B=AB

Proof

Step Hyp Ref Expression
1 sumdmdi.1 AC
2 sumdmdi.2 BC
3 1 2 chjcli ABC
4 3 cheli yABy
5 spansnsh yspanyS
6 2 chshii BS
7 shsub2 spanySBSspanyB+spany
8 5 6 7 sylancl yspanyB+spany
9 spansnid yyspany
10 8 9 sseldd yyB+spany
11 10 ad2antrl xHAtomsxBABxBABy¬yA+ByB+spany
12 elin yB+spanyAByB+spanyyAB
13 df-ne y0¬y=0
14 spansna yy0spanyHAtoms
15 13 14 sylan2br y¬y=0spanyHAtoms
16 oveq1 x=spanyxB=spanyB
17 16 ineq1d x=spanyxBAB=spanyBAB
18 16 ineq1d x=spanyxBA=spanyBA
19 18 oveq1d x=spanyxBAB=spanyBAB
20 17 19 sseq12d x=spanyxBABxBABspanyBABspanyBAB
21 20 rspcv spanyHAtomsxHAtomsxBABxBABspanyBABspanyBAB
22 15 21 syl y¬y=0xHAtomsxBABxBABspanyBABspanyBAB
23 spansnj BCyB+spany=Bspany
24 spansnch yspanyC
25 chjcom BCspanyCBspany=spanyB
26 24 25 sylan2 BCyBspany=spanyB
27 23 26 eqtrd BCyB+spany=spanyB
28 2 27 mpan yB+spany=spanyB
29 28 ineq1d yB+spanyAB=spanyBAB
30 28 ineq1d yB+spanyA=spanyBA
31 30 oveq1d yB+spanyAB=spanyBAB
32 29 31 sseq12d yB+spanyABB+spanyABspanyBABspanyBAB
33 32 adantr y¬y=0B+spanyABB+spanyABspanyBABspanyBAB
34 22 33 sylibrd y¬y=0xHAtomsxBABxBABB+spanyABB+spanyAB
35 34 com12 xHAtomsxBABxBABy¬y=0B+spanyABB+spanyAB
36 35 expdimp xHAtomsxBABxBABy¬y=0B+spanyABB+spanyAB
37 ssid BB
38 sneq y=0y=0
39 38 fveq2d y=0spany=span0
40 spansn0 span0=0
41 39 40 eqtrdi y=0spany=0
42 41 oveq2d y=0B+spany=B+0
43 6 shs0i B+0=B
44 42 43 eqtrdi y=0B+spany=B
45 44 ineq1d y=0B+spanyAB=BAB
46 inss1 BABB
47 2 1 chub2i BAB
48 37 47 ssini BBAB
49 46 48 eqssi BAB=B
50 45 49 eqtrdi y=0B+spanyAB=B
51 44 ineq1d y=0B+spanyA=BA
52 51 oveq1d y=0B+spanyAB=BAB
53 2 1 chincli BAC
54 53 2 chjcomi BAB=BBA
55 2 1 chabs1i BBA=B
56 54 55 eqtri BAB=B
57 52 56 eqtrdi y=0B+spanyAB=B
58 50 57 sseq12d y=0B+spanyABB+spanyABBB
59 37 58 mpbiri y=0B+spanyABB+spanyAB
60 36 59 pm2.61d2 xHAtomsxBABxBAByB+spanyABB+spanyAB
61 60 adantrr xHAtomsxBABxBABy¬yA+BB+spanyABB+spanyAB
62 1 2 sumdmdlem y¬yA+BB+spanyA=BA
63 62 oveq1d y¬yA+BB+spanyAB=BAB
64 63 56 eqtrdi y¬yA+BB+spanyAB=B
65 1 chshii AS
66 6 65 shsub2i BA+B
67 64 66 eqsstrdi y¬yA+BB+spanyABA+B
68 67 adantl xHAtomsxBABxBABy¬yA+BB+spanyABA+B
69 61 68 sstrd xHAtomsxBABxBABy¬yA+BB+spanyABA+B
70 69 sseld xHAtomsxBABxBABy¬yA+ByB+spanyAByA+B
71 12 70 biimtrrid xHAtomsxBABxBABy¬yA+ByB+spanyyAByA+B
72 11 71 mpand xHAtomsxBABxBABy¬yA+ByAByA+B
73 72 exp32 xHAtomsxBABxBABy¬yA+ByAByA+B
74 73 com34 xHAtomsxBABxBAByyAB¬yA+ByA+B
75 pm2.18 ¬yA+ByA+ByA+B
76 74 75 syl8 xHAtomsxBABxBAByyAByA+B
77 4 76 syl5 xHAtomsxBABxBAByAByAByA+B
78 77 pm2.43d xHAtomsxBABxBAByAByA+B
79 78 ssrdv xHAtomsxBABxBABABA+B
80 1 2 chsleji A+BAB
81 79 80 jctil xHAtomsxBABxBABA+BABABA+B
82 eqss A+B=ABA+BABABA+B
83 81 82 sylibr xHAtomsxBABxBABA+B=AB