| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atabs.1 |
|- A e. CH |
| 2 |
|
atabs.2 |
|- B e. CH |
| 3 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
| 4 |
1 3
|
atabsi |
|- ( C e. HAtoms -> ( -. C C_ ( A vH ( A vH B ) ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A i^i ( A vH B ) ) ) ) |
| 5 |
1 1 2
|
chjassi |
|- ( ( A vH A ) vH B ) = ( A vH ( A vH B ) ) |
| 6 |
1
|
chjidmi |
|- ( A vH A ) = A |
| 7 |
6
|
oveq1i |
|- ( ( A vH A ) vH B ) = ( A vH B ) |
| 8 |
5 7
|
eqtr3i |
|- ( A vH ( A vH B ) ) = ( A vH B ) |
| 9 |
8
|
sseq2i |
|- ( C C_ ( A vH ( A vH B ) ) <-> C C_ ( A vH B ) ) |
| 10 |
9
|
notbii |
|- ( -. C C_ ( A vH ( A vH B ) ) <-> -. C C_ ( A vH B ) ) |
| 11 |
1 2
|
chabs2i |
|- ( A i^i ( A vH B ) ) = A |
| 12 |
11
|
eqeq2i |
|- ( ( ( A vH C ) i^i ( A vH B ) ) = ( A i^i ( A vH B ) ) <-> ( ( A vH C ) i^i ( A vH B ) ) = A ) |
| 13 |
4 10 12
|
3imtr3g |
|- ( C e. HAtoms -> ( -. C C_ ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = A ) ) |