Metamath Proof Explorer


Theorem dmdbr4ati

Description: Dual modular pair property in terms of atoms. (Contributed by NM, 15-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 A C
sumdmdi.2 B C
Assertion dmdbr4ati A 𝑀 * B x HAtoms x B A B x B A B

Proof

Step Hyp Ref Expression
1 sumdmdi.1 A C
2 sumdmdi.2 B C
3 dmdbr4 A C B C A 𝑀 * B x C x B A B x B A B
4 1 2 3 mp2an A 𝑀 * B x C x B A B x B A B
5 atelch x HAtoms x C
6 5 imim1i x C x B A B x B A B x HAtoms x B A B x B A B
7 6 ralimi2 x C x B A B x B A B x HAtoms x B A B x B A B
8 4 7 sylbi A 𝑀 * B x HAtoms x B A B x B A B
9 1 2 sumdmdlem2 x HAtoms x B A B x B A B A + B = A B
10 1 2 sumdmdi A + B = A B A 𝑀 * B
11 9 10 sylib x HAtoms x B A B x B A B A 𝑀 * B
12 8 11 impbii A 𝑀 * B x HAtoms x B A B x B A B