Metamath Proof Explorer


Theorem dmdbr4

Description: Binary relation expressing the dual modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion dmdbr4 ACBCA𝑀*BxCxBABxBAB

Proof

Step Hyp Ref Expression
1 dmdbr2 ACBCA𝑀*ByCByyAByAB
2 chub2 BCxCBxB
3 2 ancoms xCBCBxB
4 chjcl xCBCxBC
5 sseq2 y=xBByBxB
6 ineq1 y=xByAB=xBAB
7 ineq1 y=xByA=xBA
8 7 oveq1d y=xByAB=xBAB
9 6 8 sseq12d y=xByAByABxBABxBAB
10 5 9 imbi12d y=xBByyAByABBxBxBABxBAB
11 10 rspcv xBCyCByyAByABBxBxBABxBAB
12 4 11 syl xCBCyCByyAByABBxBxBABxBAB
13 3 12 mpid xCBCyCByyAByABxBABxBAB
14 13 ex xCBCyCByyAByABxBABxBAB
15 14 com3l BCyCByyAByABxCxBABxBAB
16 15 ralrimdv BCyCByyAByABxCxBABxBAB
17 chlejb2 BCxCBxxB=x
18 17 biimpa BCxCBxxB=x
19 18 ineq1d BCxCBxxBAB=xAB
20 18 ineq1d BCxCBxxBA=xA
21 20 oveq1d BCxCBxxBAB=xAB
22 19 21 sseq12d BCxCBxxBABxBABxABxAB
23 22 biimpd BCxCBxxBABxBABxABxAB
24 23 ex BCxCBxxBABxBABxABxAB
25 24 com23 BCxCxBABxBABBxxABxAB
26 25 ralimdva BCxCxBABxBABxCBxxABxAB
27 sseq2 x=yBxBy
28 ineq1 x=yxAB=yAB
29 ineq1 x=yxA=yA
30 29 oveq1d x=yxAB=yAB
31 28 30 sseq12d x=yxABxAByAByAB
32 27 31 imbi12d x=yBxxABxABByyAByAB
33 32 cbvralvw xCBxxABxAByCByyAByAB
34 26 33 imbitrdi BCxCxBABxBAByCByyAByAB
35 16 34 impbid BCyCByyAByABxCxBABxBAB
36 35 adantl ACBCyCByyAByABxCxBABxBAB
37 1 36 bitrd ACBCA𝑀*BxCxBABxBAB