Step |
Hyp |
Ref |
Expression |
1 |
|
dmdbr2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
2 |
|
chub2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → 𝐵 ⊆ ( 𝑥 ∨ℋ 𝐵 ) ) |
3 |
2
|
ancoms |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐵 ⊆ ( 𝑥 ∨ℋ 𝐵 ) ) |
4 |
|
chjcl |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝑥 ∨ℋ 𝐵 ) ∈ Cℋ ) |
5 |
|
sseq2 |
⊢ ( 𝑦 = ( 𝑥 ∨ℋ 𝐵 ) → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ( 𝑥 ∨ℋ 𝐵 ) ) ) |
6 |
|
ineq1 |
⊢ ( 𝑦 = ( 𝑥 ∨ℋ 𝐵 ) → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
7 |
|
ineq1 |
⊢ ( 𝑦 = ( 𝑥 ∨ℋ 𝐵 ) → ( 𝑦 ∩ 𝐴 ) = ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑦 = ( 𝑥 ∨ℋ 𝐵 ) → ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
9 |
6 8
|
sseq12d |
⊢ ( 𝑦 = ( 𝑥 ∨ℋ 𝐵 ) → ( ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ↔ ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
10 |
5 9
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 ∨ℋ 𝐵 ) → ( ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ↔ ( 𝐵 ⊆ ( 𝑥 ∨ℋ 𝐵 ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
11 |
10
|
rspcv |
⊢ ( ( 𝑥 ∨ℋ 𝐵 ) ∈ Cℋ → ( ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) → ( 𝐵 ⊆ ( 𝑥 ∨ℋ 𝐵 ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
12 |
4 11
|
syl |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) → ( 𝐵 ⊆ ( 𝑥 ∨ℋ 𝐵 ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
13 |
3 12
|
mpid |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
14 |
13
|
ex |
⊢ ( 𝑥 ∈ Cℋ → ( 𝐵 ∈ Cℋ → ( ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
15 |
14
|
com3l |
⊢ ( 𝐵 ∈ Cℋ → ( ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) → ( 𝑥 ∈ Cℋ → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
16 |
15
|
ralrimdv |
⊢ ( 𝐵 ∈ Cℋ → ( ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) → ∀ 𝑥 ∈ Cℋ ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
17 |
|
chlejb2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( 𝐵 ⊆ 𝑥 ↔ ( 𝑥 ∨ℋ 𝐵 ) = 𝑥 ) ) |
18 |
17
|
biimpa |
⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) ∧ 𝐵 ⊆ 𝑥 ) → ( 𝑥 ∨ℋ 𝐵 ) = 𝑥 ) |
19 |
18
|
ineq1d |
⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) ∧ 𝐵 ⊆ 𝑥 ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
20 |
18
|
ineq1d |
⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) ∧ 𝐵 ⊆ 𝑥 ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ∩ 𝐴 ) ) |
21 |
20
|
oveq1d |
⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) ∧ 𝐵 ⊆ 𝑥 ) → ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
22 |
19 21
|
sseq12d |
⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) ∧ 𝐵 ⊆ 𝑥 ) → ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ↔ ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
23 |
22
|
biimpd |
⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) ∧ 𝐵 ⊆ 𝑥 ) → ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
24 |
23
|
ex |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( 𝐵 ⊆ 𝑥 → ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
25 |
24
|
com23 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝐵 ⊆ 𝑥 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
26 |
25
|
ralimdva |
⊢ ( 𝐵 ∈ Cℋ → ( ∀ 𝑥 ∈ Cℋ ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
27 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑦 ) ) |
28 |
|
ineq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
29 |
|
ineq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∩ 𝐴 ) = ( 𝑦 ∩ 𝐴 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
31 |
28 30
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ↔ ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
32 |
27 31
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ⊆ 𝑥 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ↔ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
33 |
32
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ↔ ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
34 |
26 33
|
syl6ib |
⊢ ( 𝐵 ∈ Cℋ → ( ∀ 𝑥 ∈ Cℋ ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) → ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
35 |
16 34
|
impbid |
⊢ ( 𝐵 ∈ Cℋ → ( ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ↔ ∀ 𝑥 ∈ Cℋ ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∀ 𝑦 ∈ Cℋ ( 𝐵 ⊆ 𝑦 → ( 𝑦 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑦 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ↔ ∀ 𝑥 ∈ Cℋ ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
37 |
1 36
|
bitrd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ∀ 𝑥 ∈ Cℋ ( ( 𝑥 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |