Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
|
2 |
|
sumdmdi.2 |
|
3 |
|
ineq2 |
|
4 |
3
|
adantr |
|
5 |
|
elin |
|
6 |
1 2
|
chseli |
|
7 |
|
ssel2 |
|
8 |
|
chsh |
|
9 |
|
shsubcl |
|
10 |
9
|
3exp |
|
11 |
8 10
|
syl |
|
12 |
7 11
|
syl7 |
|
13 |
12
|
exp4a |
|
14 |
13
|
com23 |
|
15 |
14
|
imp41 |
|
16 |
15
|
adantlr |
|
17 |
16
|
adantr |
|
18 |
|
chel |
|
19 |
18
|
adantlr |
|
20 |
1
|
cheli |
|
21 |
2
|
cheli |
|
22 |
|
hvsubadd |
|
23 |
|
ax-hvcom |
|
24 |
23
|
eqeq1d |
|
25 |
|
eqcom |
|
26 |
24 25
|
bitrdi |
|
27 |
26
|
3adant1 |
|
28 |
22 27
|
bitrd |
|
29 |
28
|
3com23 |
|
30 |
19 20 21 29
|
syl3an |
|
31 |
30
|
3expa |
|
32 |
|
eleq1 |
|
33 |
31 32
|
syl6bir |
|
34 |
33
|
imp |
|
35 |
17 34
|
mpbid |
|
36 |
|
simpr |
|
37 |
35 36
|
jca |
|
38 |
37
|
exp31 |
|
39 |
38
|
reximdvai |
|
40 |
|
r19.42v |
|
41 |
39 40
|
syl6ib |
|
42 |
41
|
reximdva |
|
43 |
|
elin |
|
44 |
|
ancom |
|
45 |
43 44
|
bitri |
|
46 |
45
|
anbi1i |
|
47 |
|
anass |
|
48 |
46 47
|
bitri |
|
49 |
48
|
rexbii2 |
|
50 |
42 49
|
syl6ibr |
|
51 |
1
|
chshii |
|
52 |
|
shincl |
|
53 |
8 51 52
|
sylancl |
|
54 |
53
|
ad2antrr |
|
55 |
2
|
chshii |
|
56 |
|
shsel |
|
57 |
54 55 56
|
sylancl |
|
58 |
50 57
|
sylibrd |
|
59 |
6 58
|
syl5bi |
|
60 |
59
|
expimpd |
|
61 |
5 60
|
syl5bi |
|
62 |
61
|
ssrdv |
|
63 |
62
|
adantl |
|
64 |
4 63
|
eqsstrrd |
|
65 |
|
chincl |
|
66 |
1 65
|
mpan2 |
|
67 |
|
chslej |
|
68 |
66 2 67
|
sylancl |
|
69 |
68
|
ad2antrl |
|
70 |
64 69
|
sstrd |
|
71 |
70
|
exp32 |
|
72 |
71
|
ralrimiv |
|
73 |
|
dmdbr2 |
|
74 |
1 2 73
|
mp2an |
|
75 |
72 74
|
sylibr |
|