| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumdmdi.1 |
|
| 2 |
|
sumdmdi.2 |
|
| 3 |
|
ineq2 |
|
| 4 |
3
|
adantr |
|
| 5 |
|
elin |
|
| 6 |
1 2
|
chseli |
|
| 7 |
|
ssel2 |
|
| 8 |
|
chsh |
|
| 9 |
|
shsubcl |
|
| 10 |
9
|
3exp |
|
| 11 |
8 10
|
syl |
|
| 12 |
7 11
|
syl7 |
|
| 13 |
12
|
exp4a |
|
| 14 |
13
|
com23 |
|
| 15 |
14
|
imp41 |
|
| 16 |
15
|
adantlr |
|
| 17 |
16
|
adantr |
|
| 18 |
|
chel |
|
| 19 |
18
|
adantlr |
|
| 20 |
1
|
cheli |
|
| 21 |
2
|
cheli |
|
| 22 |
|
hvsubadd |
|
| 23 |
|
ax-hvcom |
|
| 24 |
23
|
eqeq1d |
|
| 25 |
|
eqcom |
|
| 26 |
24 25
|
bitrdi |
|
| 27 |
26
|
3adant1 |
|
| 28 |
22 27
|
bitrd |
|
| 29 |
28
|
3com23 |
|
| 30 |
19 20 21 29
|
syl3an |
|
| 31 |
30
|
3expa |
|
| 32 |
|
eleq1 |
|
| 33 |
31 32
|
biimtrrdi |
|
| 34 |
33
|
imp |
|
| 35 |
17 34
|
mpbid |
|
| 36 |
|
simpr |
|
| 37 |
35 36
|
jca |
|
| 38 |
37
|
exp31 |
|
| 39 |
38
|
reximdvai |
|
| 40 |
|
r19.42v |
|
| 41 |
39 40
|
imbitrdi |
|
| 42 |
41
|
reximdva |
|
| 43 |
|
elin |
|
| 44 |
|
ancom |
|
| 45 |
43 44
|
bitri |
|
| 46 |
45
|
anbi1i |
|
| 47 |
|
anass |
|
| 48 |
46 47
|
bitri |
|
| 49 |
48
|
rexbii2 |
|
| 50 |
42 49
|
imbitrrdi |
|
| 51 |
1
|
chshii |
|
| 52 |
|
shincl |
|
| 53 |
8 51 52
|
sylancl |
|
| 54 |
53
|
ad2antrr |
|
| 55 |
2
|
chshii |
|
| 56 |
|
shsel |
|
| 57 |
54 55 56
|
sylancl |
|
| 58 |
50 57
|
sylibrd |
|
| 59 |
6 58
|
biimtrid |
|
| 60 |
59
|
expimpd |
|
| 61 |
5 60
|
biimtrid |
|
| 62 |
61
|
ssrdv |
|
| 63 |
62
|
adantl |
|
| 64 |
4 63
|
eqsstrrd |
|
| 65 |
|
chincl |
|
| 66 |
1 65
|
mpan2 |
|
| 67 |
|
chslej |
|
| 68 |
66 2 67
|
sylancl |
|
| 69 |
68
|
ad2antrl |
|
| 70 |
64 69
|
sstrd |
|
| 71 |
70
|
exp32 |
|
| 72 |
71
|
ralrimiv |
|
| 73 |
|
dmdbr2 |
|
| 74 |
1 2 73
|
mp2an |
|
| 75 |
72 74
|
sylibr |
|