| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumdmdi.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | sumdmdi.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | ineq2 | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  →  ( 𝑥  ∩  ( 𝐴  +ℋ  𝐵 ) )  =  ( 𝑥  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 ) )  →  ( 𝑥  ∩  ( 𝐴  +ℋ  𝐵 ) )  =  ( 𝑥  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 5 |  | elin | ⊢ ( 𝑦  ∈  ( 𝑥  ∩  ( 𝐴  +ℋ  𝐵 ) )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 6 | 1 2 | chseli | ⊢ ( 𝑦  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 7 |  | ssel2 | ⊢ ( ( 𝐵  ⊆  𝑥  ∧  𝑤  ∈  𝐵 )  →  𝑤  ∈  𝑥 ) | 
						
							| 8 |  | chsh | ⊢ ( 𝑥  ∈   Cℋ   →  𝑥  ∈   Sℋ  ) | 
						
							| 9 |  | shsubcl | ⊢ ( ( 𝑥  ∈   Sℋ   ∧  𝑦  ∈  𝑥  ∧  𝑤  ∈  𝑥 )  →  ( 𝑦  −ℎ  𝑤 )  ∈  𝑥 ) | 
						
							| 10 | 9 | 3exp | ⊢ ( 𝑥  ∈   Sℋ   →  ( 𝑦  ∈  𝑥  →  ( 𝑤  ∈  𝑥  →  ( 𝑦  −ℎ  𝑤 )  ∈  𝑥 ) ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝑥  ∈   Cℋ   →  ( 𝑦  ∈  𝑥  →  ( 𝑤  ∈  𝑥  →  ( 𝑦  −ℎ  𝑤 )  ∈  𝑥 ) ) ) | 
						
							| 12 | 7 11 | syl7 | ⊢ ( 𝑥  ∈   Cℋ   →  ( 𝑦  ∈  𝑥  →  ( ( 𝐵  ⊆  𝑥  ∧  𝑤  ∈  𝐵 )  →  ( 𝑦  −ℎ  𝑤 )  ∈  𝑥 ) ) ) | 
						
							| 13 | 12 | exp4a | ⊢ ( 𝑥  ∈   Cℋ   →  ( 𝑦  ∈  𝑥  →  ( 𝐵  ⊆  𝑥  →  ( 𝑤  ∈  𝐵  →  ( 𝑦  −ℎ  𝑤 )  ∈  𝑥 ) ) ) ) | 
						
							| 14 | 13 | com23 | ⊢ ( 𝑥  ∈   Cℋ   →  ( 𝐵  ⊆  𝑥  →  ( 𝑦  ∈  𝑥  →  ( 𝑤  ∈  𝐵  →  ( 𝑦  −ℎ  𝑤 )  ∈  𝑥 ) ) ) ) | 
						
							| 15 | 14 | imp41 | ⊢ ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑤  ∈  𝐵 )  →  ( 𝑦  −ℎ  𝑤 )  ∈  𝑥 ) | 
						
							| 16 | 15 | adantlr | ⊢ ( ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑤  ∈  𝐵 )  →  ( 𝑦  −ℎ  𝑤 )  ∈  𝑥 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑤  ∈  𝐵 )  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( 𝑦  −ℎ  𝑤 )  ∈  𝑥 ) | 
						
							| 18 |  | chel | ⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈   ℋ ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈   ℋ ) | 
						
							| 20 | 1 | cheli | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈   ℋ ) | 
						
							| 21 | 2 | cheli | ⊢ ( 𝑤  ∈  𝐵  →  𝑤  ∈   ℋ ) | 
						
							| 22 |  | hvsubadd | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑤  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑦  −ℎ  𝑤 )  =  𝑧  ↔  ( 𝑤  +ℎ  𝑧 )  =  𝑦 ) ) | 
						
							| 23 |  | ax-hvcom | ⊢ ( ( 𝑤  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑤  +ℎ  𝑧 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( ( 𝑤  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑤  +ℎ  𝑧 )  =  𝑦  ↔  ( 𝑧  +ℎ  𝑤 )  =  𝑦 ) ) | 
						
							| 25 |  | eqcom | ⊢ ( ( 𝑧  +ℎ  𝑤 )  =  𝑦  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 26 | 24 25 | bitrdi | ⊢ ( ( 𝑤  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑤  +ℎ  𝑧 )  =  𝑦  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 27 | 26 | 3adant1 | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑤  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑤  +ℎ  𝑧 )  =  𝑦  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 28 | 22 27 | bitrd | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑤  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑦  −ℎ  𝑤 )  =  𝑧  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 29 | 28 | 3com23 | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑦  −ℎ  𝑤 )  =  𝑧  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 30 | 19 20 21 29 | syl3an | ⊢ ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 )  →  ( ( 𝑦  −ℎ  𝑤 )  =  𝑧  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 31 | 30 | 3expa | ⊢ ( ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑤  ∈  𝐵 )  →  ( ( 𝑦  −ℎ  𝑤 )  =  𝑧  ↔  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 32 |  | eleq1 | ⊢ ( ( 𝑦  −ℎ  𝑤 )  =  𝑧  →  ( ( 𝑦  −ℎ  𝑤 )  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 33 | 31 32 | biimtrrdi | ⊢ ( ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑤  ∈  𝐵 )  →  ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ( ( 𝑦  −ℎ  𝑤 )  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑤  ∈  𝐵 )  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( ( 𝑦  −ℎ  𝑤 )  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 35 | 17 34 | mpbid | ⊢ ( ( ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑤  ∈  𝐵 )  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑧  ∈  𝑥 ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑤  ∈  𝐵 )  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 37 | 35 36 | jca | ⊢ ( ( ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑤  ∈  𝐵 )  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( 𝑧  ∈  𝑥  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 38 | 37 | exp31 | ⊢ ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑤  ∈  𝐵  →  ( 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ( 𝑧  ∈  𝑥  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) ) ) | 
						
							| 39 | 38 | reximdvai | ⊢ ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  →  ( ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ∃ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑥  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) ) | 
						
							| 40 |  | r19.42v | ⊢ ( ∃ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑥  ∧  𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  ↔  ( 𝑧  ∈  𝑥  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 41 | 39 40 | imbitrdi | ⊢ ( ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝐴 )  →  ( ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ( 𝑧  ∈  𝑥  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) ) | 
						
							| 42 | 41 | reximdva | ⊢ ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ∃ 𝑧  ∈  𝐴 ( 𝑧  ∈  𝑥  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) ) | 
						
							| 43 |  | elin | ⊢ ( 𝑧  ∈  ( 𝑥  ∩  𝐴 )  ↔  ( 𝑧  ∈  𝑥  ∧  𝑧  ∈  𝐴 ) ) | 
						
							| 44 |  | ancom | ⊢ ( ( 𝑧  ∈  𝑥  ∧  𝑧  ∈  𝐴 )  ↔  ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 45 | 43 44 | bitri | ⊢ ( 𝑧  ∈  ( 𝑥  ∩  𝐴 )  ↔  ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 46 | 45 | anbi1i | ⊢ ( ( 𝑧  ∈  ( 𝑥  ∩  𝐴 )  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  ↔  ( ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝑥 )  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 47 |  | anass | ⊢ ( ( ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝑥 )  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ( 𝑧  ∈  𝑥  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) ) | 
						
							| 48 | 46 47 | bitri | ⊢ ( ( 𝑧  ∈  ( 𝑥  ∩  𝐴 )  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ( 𝑧  ∈  𝑥  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) ) | 
						
							| 49 | 48 | rexbii2 | ⊢ ( ∃ 𝑧  ∈  ( 𝑥  ∩  𝐴 ) ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 )  ↔  ∃ 𝑧  ∈  𝐴 ( 𝑧  ∈  𝑥  ∧  ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 50 | 42 49 | imbitrrdi | ⊢ ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  ∃ 𝑧  ∈  ( 𝑥  ∩  𝐴 ) ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 51 | 1 | chshii | ⊢ 𝐴  ∈   Sℋ | 
						
							| 52 |  | shincl | ⊢ ( ( 𝑥  ∈   Sℋ   ∧  𝐴  ∈   Sℋ  )  →  ( 𝑥  ∩  𝐴 )  ∈   Sℋ  ) | 
						
							| 53 | 8 51 52 | sylancl | ⊢ ( 𝑥  ∈   Cℋ   →  ( 𝑥  ∩  𝐴 )  ∈   Sℋ  ) | 
						
							| 54 | 53 | ad2antrr | ⊢ ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑥  ∩  𝐴 )  ∈   Sℋ  ) | 
						
							| 55 | 2 | chshii | ⊢ 𝐵  ∈   Sℋ | 
						
							| 56 |  | shsel | ⊢ ( ( ( 𝑥  ∩  𝐴 )  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝑦  ∈  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 )  ↔  ∃ 𝑧  ∈  ( 𝑥  ∩  𝐴 ) ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 57 | 54 55 56 | sylancl | ⊢ ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑦  ∈  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 )  ↔  ∃ 𝑧  ∈  ( 𝑥  ∩  𝐴 ) ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 58 | 50 57 | sylibrd | ⊢ ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 𝑦  =  ( 𝑧  +ℎ  𝑤 )  →  𝑦  ∈  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 ) ) ) | 
						
							| 59 | 6 58 | biimtrid | ⊢ ( ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑦  ∈  ( 𝐴  +ℋ  𝐵 )  →  𝑦  ∈  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 ) ) ) | 
						
							| 60 | 59 | expimpd | ⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  →  ( ( 𝑦  ∈  𝑥  ∧  𝑦  ∈  ( 𝐴  +ℋ  𝐵 ) )  →  𝑦  ∈  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 ) ) ) | 
						
							| 61 | 5 60 | biimtrid | ⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  →  ( 𝑦  ∈  ( 𝑥  ∩  ( 𝐴  +ℋ  𝐵 ) )  →  𝑦  ∈  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 ) ) ) | 
						
							| 62 | 61 | ssrdv | ⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 )  →  ( 𝑥  ∩  ( 𝐴  +ℋ  𝐵 ) )  ⊆  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 ) )  →  ( 𝑥  ∩  ( 𝐴  +ℋ  𝐵 ) )  ⊆  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 ) ) | 
						
							| 64 | 4 63 | eqsstrrd | ⊢ ( ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 ) )  →  ( 𝑥  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 ) ) | 
						
							| 65 |  | chincl | ⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝐴  ∈   Cℋ  )  →  ( 𝑥  ∩  𝐴 )  ∈   Cℋ  ) | 
						
							| 66 | 1 65 | mpan2 | ⊢ ( 𝑥  ∈   Cℋ   →  ( 𝑥  ∩  𝐴 )  ∈   Cℋ  ) | 
						
							| 67 |  | chslej | ⊢ ( ( ( 𝑥  ∩  𝐴 )  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 )  ⊆  ( ( 𝑥  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 68 | 66 2 67 | sylancl | ⊢ ( 𝑥  ∈   Cℋ   →  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 )  ⊆  ( ( 𝑥  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 69 | 68 | ad2antrl | ⊢ ( ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 ) )  →  ( ( 𝑥  ∩  𝐴 )  +ℋ  𝐵 )  ⊆  ( ( 𝑥  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 70 | 64 69 | sstrd | ⊢ ( ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝑥  ∈   Cℋ   ∧  𝐵  ⊆  𝑥 ) )  →  ( 𝑥  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( 𝑥  ∩  𝐴 )  ∨ℋ  𝐵 ) ) | 
						
							| 71 | 70 | exp32 | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  →  ( 𝑥  ∈   Cℋ   →  ( 𝐵  ⊆  𝑥  →  ( 𝑥  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( 𝑥  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) ) | 
						
							| 72 | 71 | ralrimiv | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  →  ∀ 𝑥  ∈   Cℋ  ( 𝐵  ⊆  𝑥  →  ( 𝑥  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( 𝑥  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 73 |  | dmdbr2 | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  𝑀ℋ*  𝐵  ↔  ∀ 𝑥  ∈   Cℋ  ( 𝐵  ⊆  𝑥  →  ( 𝑥  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( 𝑥  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) ) | 
						
							| 74 | 1 2 73 | mp2an | ⊢ ( 𝐴  𝑀ℋ*  𝐵  ↔  ∀ 𝑥  ∈   Cℋ  ( 𝐵  ⊆  𝑥  →  ( 𝑥  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ⊆  ( ( 𝑥  ∩  𝐴 )  ∨ℋ  𝐵 ) ) ) | 
						
							| 75 | 72 74 | sylibr | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  →  𝐴  𝑀ℋ*  𝐵 ) |