Metamath Proof Explorer


Theorem sumdmdii

Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in MaedaMaeda p. 139. (Contributed by NM, 12-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion sumdmdii ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → 𝐴 𝑀* 𝐵 )

Proof

Step Hyp Ref Expression
1 sumdmdi.1 𝐴C
2 sumdmdi.2 𝐵C
3 ineq2 ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → ( 𝑥 ∩ ( 𝐴 + 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 𝐵 ) ) )
4 3 adantr ( ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ∧ ( 𝑥C𝐵𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 + 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 𝐵 ) ) )
5 elin ( 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 + 𝐵 ) ) ↔ ( 𝑦𝑥𝑦 ∈ ( 𝐴 + 𝐵 ) ) )
6 1 2 chseli ( 𝑦 ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑧𝐴𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) )
7 ssel2 ( ( 𝐵𝑥𝑤𝐵 ) → 𝑤𝑥 )
8 chsh ( 𝑥C𝑥S )
9 shsubcl ( ( 𝑥S𝑦𝑥𝑤𝑥 ) → ( 𝑦 𝑤 ) ∈ 𝑥 )
10 9 3exp ( 𝑥S → ( 𝑦𝑥 → ( 𝑤𝑥 → ( 𝑦 𝑤 ) ∈ 𝑥 ) ) )
11 8 10 syl ( 𝑥C → ( 𝑦𝑥 → ( 𝑤𝑥 → ( 𝑦 𝑤 ) ∈ 𝑥 ) ) )
12 7 11 syl7 ( 𝑥C → ( 𝑦𝑥 → ( ( 𝐵𝑥𝑤𝐵 ) → ( 𝑦 𝑤 ) ∈ 𝑥 ) ) )
13 12 exp4a ( 𝑥C → ( 𝑦𝑥 → ( 𝐵𝑥 → ( 𝑤𝐵 → ( 𝑦 𝑤 ) ∈ 𝑥 ) ) ) )
14 13 com23 ( 𝑥C → ( 𝐵𝑥 → ( 𝑦𝑥 → ( 𝑤𝐵 → ( 𝑦 𝑤 ) ∈ 𝑥 ) ) ) )
15 14 imp41 ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑤𝐵 ) → ( 𝑦 𝑤 ) ∈ 𝑥 )
16 15 adantlr ( ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( 𝑦 𝑤 ) ∈ 𝑥 )
17 16 adantr ( ( ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑦 = ( 𝑧 + 𝑤 ) ) → ( 𝑦 𝑤 ) ∈ 𝑥 )
18 chel ( ( 𝑥C𝑦𝑥 ) → 𝑦 ∈ ℋ )
19 18 adantlr ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) → 𝑦 ∈ ℋ )
20 1 cheli ( 𝑧𝐴𝑧 ∈ ℋ )
21 2 cheli ( 𝑤𝐵𝑤 ∈ ℋ )
22 hvsubadd ( ( 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 𝑤 ) = 𝑧 ↔ ( 𝑤 + 𝑧 ) = 𝑦 ) )
23 ax-hvcom ( ( 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑤 + 𝑧 ) = ( 𝑧 + 𝑤 ) )
24 23 eqeq1d ( ( 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑤 + 𝑧 ) = 𝑦 ↔ ( 𝑧 + 𝑤 ) = 𝑦 ) )
25 eqcom ( ( 𝑧 + 𝑤 ) = 𝑦𝑦 = ( 𝑧 + 𝑤 ) )
26 24 25 bitrdi ( ( 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑤 + 𝑧 ) = 𝑦𝑦 = ( 𝑧 + 𝑤 ) ) )
27 26 3adant1 ( ( 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑤 + 𝑧 ) = 𝑦𝑦 = ( 𝑧 + 𝑤 ) ) )
28 22 27 bitrd ( ( 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 𝑤 ) = 𝑧𝑦 = ( 𝑧 + 𝑤 ) ) )
29 28 3com23 ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑦 𝑤 ) = 𝑧𝑦 = ( 𝑧 + 𝑤 ) ) )
30 19 20 21 29 syl3an ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴𝑤𝐵 ) → ( ( 𝑦 𝑤 ) = 𝑧𝑦 = ( 𝑧 + 𝑤 ) ) )
31 30 3expa ( ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( ( 𝑦 𝑤 ) = 𝑧𝑦 = ( 𝑧 + 𝑤 ) ) )
32 eleq1 ( ( 𝑦 𝑤 ) = 𝑧 → ( ( 𝑦 𝑤 ) ∈ 𝑥𝑧𝑥 ) )
33 31 32 syl6bir ( ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ( 𝑦 𝑤 ) ∈ 𝑥𝑧𝑥 ) ) )
34 33 imp ( ( ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑦 = ( 𝑧 + 𝑤 ) ) → ( ( 𝑦 𝑤 ) ∈ 𝑥𝑧𝑥 ) )
35 17 34 mpbid ( ( ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑦 = ( 𝑧 + 𝑤 ) ) → 𝑧𝑥 )
36 simpr ( ( ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑦 = ( 𝑧 + 𝑤 ) ) → 𝑦 = ( 𝑧 + 𝑤 ) )
37 35 36 jca ( ( ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑦 = ( 𝑧 + 𝑤 ) ) → ( 𝑧𝑥𝑦 = ( 𝑧 + 𝑤 ) ) )
38 37 exp31 ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) → ( 𝑤𝐵 → ( 𝑦 = ( 𝑧 + 𝑤 ) → ( 𝑧𝑥𝑦 = ( 𝑧 + 𝑤 ) ) ) ) )
39 38 reximdvai ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) → ( ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) → ∃ 𝑤𝐵 ( 𝑧𝑥𝑦 = ( 𝑧 + 𝑤 ) ) ) )
40 r19.42v ( ∃ 𝑤𝐵 ( 𝑧𝑥𝑦 = ( 𝑧 + 𝑤 ) ) ↔ ( 𝑧𝑥 ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) )
41 39 40 syl6ib ( ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝐴 ) → ( ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) → ( 𝑧𝑥 ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) ) )
42 41 reximdva ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) → ( ∃ 𝑧𝐴𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) → ∃ 𝑧𝐴 ( 𝑧𝑥 ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) ) )
43 elin ( 𝑧 ∈ ( 𝑥𝐴 ) ↔ ( 𝑧𝑥𝑧𝐴 ) )
44 ancom ( ( 𝑧𝑥𝑧𝐴 ) ↔ ( 𝑧𝐴𝑧𝑥 ) )
45 43 44 bitri ( 𝑧 ∈ ( 𝑥𝐴 ) ↔ ( 𝑧𝐴𝑧𝑥 ) )
46 45 anbi1i ( ( 𝑧 ∈ ( 𝑥𝐴 ) ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) ↔ ( ( 𝑧𝐴𝑧𝑥 ) ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) )
47 anass ( ( ( 𝑧𝐴𝑧𝑥 ) ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) ↔ ( 𝑧𝐴 ∧ ( 𝑧𝑥 ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) ) )
48 46 47 bitri ( ( 𝑧 ∈ ( 𝑥𝐴 ) ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) ↔ ( 𝑧𝐴 ∧ ( 𝑧𝑥 ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) ) )
49 48 rexbii2 ( ∃ 𝑧 ∈ ( 𝑥𝐴 ) ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ↔ ∃ 𝑧𝐴 ( 𝑧𝑥 ∧ ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) )
50 42 49 syl6ibr ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) → ( ∃ 𝑧𝐴𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) → ∃ 𝑧 ∈ ( 𝑥𝐴 ) ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) )
51 1 chshii 𝐴S
52 shincl ( ( 𝑥S𝐴S ) → ( 𝑥𝐴 ) ∈ S )
53 8 51 52 sylancl ( 𝑥C → ( 𝑥𝐴 ) ∈ S )
54 53 ad2antrr ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) → ( 𝑥𝐴 ) ∈ S )
55 2 chshii 𝐵S
56 shsel ( ( ( 𝑥𝐴 ) ∈ S𝐵S ) → ( 𝑦 ∈ ( ( 𝑥𝐴 ) + 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝑥𝐴 ) ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) )
57 54 55 56 sylancl ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) → ( 𝑦 ∈ ( ( 𝑥𝐴 ) + 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝑥𝐴 ) ∃ 𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) ) )
58 50 57 sylibrd ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) → ( ∃ 𝑧𝐴𝑤𝐵 𝑦 = ( 𝑧 + 𝑤 ) → 𝑦 ∈ ( ( 𝑥𝐴 ) + 𝐵 ) ) )
59 6 58 syl5bi ( ( ( 𝑥C𝐵𝑥 ) ∧ 𝑦𝑥 ) → ( 𝑦 ∈ ( 𝐴 + 𝐵 ) → 𝑦 ∈ ( ( 𝑥𝐴 ) + 𝐵 ) ) )
60 59 expimpd ( ( 𝑥C𝐵𝑥 ) → ( ( 𝑦𝑥𝑦 ∈ ( 𝐴 + 𝐵 ) ) → 𝑦 ∈ ( ( 𝑥𝐴 ) + 𝐵 ) ) )
61 5 60 syl5bi ( ( 𝑥C𝐵𝑥 ) → ( 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 + 𝐵 ) ) → 𝑦 ∈ ( ( 𝑥𝐴 ) + 𝐵 ) ) )
62 61 ssrdv ( ( 𝑥C𝐵𝑥 ) → ( 𝑥 ∩ ( 𝐴 + 𝐵 ) ) ⊆ ( ( 𝑥𝐴 ) + 𝐵 ) )
63 62 adantl ( ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ∧ ( 𝑥C𝐵𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 + 𝐵 ) ) ⊆ ( ( 𝑥𝐴 ) + 𝐵 ) )
64 4 63 eqsstrrd ( ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ∧ ( 𝑥C𝐵𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( 𝑥𝐴 ) + 𝐵 ) )
65 chincl ( ( 𝑥C𝐴C ) → ( 𝑥𝐴 ) ∈ C )
66 1 65 mpan2 ( 𝑥C → ( 𝑥𝐴 ) ∈ C )
67 chslej ( ( ( 𝑥𝐴 ) ∈ C𝐵C ) → ( ( 𝑥𝐴 ) + 𝐵 ) ⊆ ( ( 𝑥𝐴 ) ∨ 𝐵 ) )
68 66 2 67 sylancl ( 𝑥C → ( ( 𝑥𝐴 ) + 𝐵 ) ⊆ ( ( 𝑥𝐴 ) ∨ 𝐵 ) )
69 68 ad2antrl ( ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ∧ ( 𝑥C𝐵𝑥 ) ) → ( ( 𝑥𝐴 ) + 𝐵 ) ⊆ ( ( 𝑥𝐴 ) ∨ 𝐵 ) )
70 64 69 sstrd ( ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ∧ ( 𝑥C𝐵𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( 𝑥𝐴 ) ∨ 𝐵 ) )
71 70 exp32 ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → ( 𝑥C → ( 𝐵𝑥 → ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( 𝑥𝐴 ) ∨ 𝐵 ) ) ) )
72 71 ralrimiv ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → ∀ 𝑥C ( 𝐵𝑥 → ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( 𝑥𝐴 ) ∨ 𝐵 ) ) )
73 dmdbr2 ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 ↔ ∀ 𝑥C ( 𝐵𝑥 → ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( 𝑥𝐴 ) ∨ 𝐵 ) ) ) )
74 1 2 73 mp2an ( 𝐴 𝑀* 𝐵 ↔ ∀ 𝑥C ( 𝐵𝑥 → ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( 𝑥𝐴 ) ∨ 𝐵 ) ) )
75 72 74 sylibr ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → 𝐴 𝑀* 𝐵 )