Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
sumdmdi.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
ineq2 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( 𝑥 ∩ ( 𝐴 +ℋ 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 +ℋ 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
5 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 +ℋ 𝐵 ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
6 |
1 2
|
chseli |
⊢ ( 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) |
7 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ 𝑥 ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ 𝑥 ) |
8 |
|
chsh |
⊢ ( 𝑥 ∈ Cℋ → 𝑥 ∈ Sℋ ) |
9 |
|
shsubcl |
⊢ ( ( 𝑥 ∈ Sℋ ∧ 𝑦 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ) |
10 |
9
|
3exp |
⊢ ( 𝑥 ∈ Sℋ → ( 𝑦 ∈ 𝑥 → ( 𝑤 ∈ 𝑥 → ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ) ) ) |
11 |
8 10
|
syl |
⊢ ( 𝑥 ∈ Cℋ → ( 𝑦 ∈ 𝑥 → ( 𝑤 ∈ 𝑥 → ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ) ) ) |
12 |
7 11
|
syl7 |
⊢ ( 𝑥 ∈ Cℋ → ( 𝑦 ∈ 𝑥 → ( ( 𝐵 ⊆ 𝑥 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ) ) ) |
13 |
12
|
exp4a |
⊢ ( 𝑥 ∈ Cℋ → ( 𝑦 ∈ 𝑥 → ( 𝐵 ⊆ 𝑥 → ( 𝑤 ∈ 𝐵 → ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ) ) ) ) |
14 |
13
|
com23 |
⊢ ( 𝑥 ∈ Cℋ → ( 𝐵 ⊆ 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑤 ∈ 𝐵 → ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ) ) ) ) |
15 |
14
|
imp41 |
⊢ ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ) |
16 |
15
|
adantlr |
⊢ ( ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ) |
17 |
16
|
adantr |
⊢ ( ( ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) → ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ) |
18 |
|
chel |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ℋ ) |
19 |
18
|
adantlr |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ℋ ) |
20 |
1
|
cheli |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ ) |
21 |
2
|
cheli |
⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ ) |
22 |
|
hvsubadd |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 −ℎ 𝑤 ) = 𝑧 ↔ ( 𝑤 +ℎ 𝑧 ) = 𝑦 ) ) |
23 |
|
ax-hvcom |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑤 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑤 ) ) |
24 |
23
|
eqeq1d |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑤 +ℎ 𝑧 ) = 𝑦 ↔ ( 𝑧 +ℎ 𝑤 ) = 𝑦 ) ) |
25 |
|
eqcom |
⊢ ( ( 𝑧 +ℎ 𝑤 ) = 𝑦 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) |
26 |
24 25
|
bitrdi |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑤 +ℎ 𝑧 ) = 𝑦 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
27 |
26
|
3adant1 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑤 +ℎ 𝑧 ) = 𝑦 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
28 |
22 27
|
bitrd |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 −ℎ 𝑤 ) = 𝑧 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
29 |
28
|
3com23 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑦 −ℎ 𝑤 ) = 𝑧 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
30 |
19 20 21 29
|
syl3an |
⊢ ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑦 −ℎ 𝑤 ) = 𝑧 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
31 |
30
|
3expa |
⊢ ( ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑦 −ℎ 𝑤 ) = 𝑧 ↔ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
32 |
|
eleq1 |
⊢ ( ( 𝑦 −ℎ 𝑤 ) = 𝑧 → ( ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
33 |
31 32
|
syl6bir |
⊢ ( ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ( ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) ) |
34 |
33
|
imp |
⊢ ( ( ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) → ( ( 𝑦 −ℎ 𝑤 ) ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
35 |
17 34
|
mpbid |
⊢ ( ( ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) → 𝑧 ∈ 𝑥 ) |
36 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) → 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) |
37 |
35 36
|
jca |
⊢ ( ( ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) → ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
38 |
37
|
exp31 |
⊢ ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑤 ∈ 𝐵 → ( 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) ) ) |
39 |
38
|
reximdvai |
⊢ ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) ) |
40 |
|
r19.42v |
⊢ ( ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
41 |
39 40
|
syl6ib |
⊢ ( ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) ) |
42 |
41
|
reximdva |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) ) |
43 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝑥 ∩ 𝐴 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝐴 ) ) |
44 |
|
ancom |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) |
45 |
43 44
|
bitri |
⊢ ( 𝑧 ∈ ( 𝑥 ∩ 𝐴 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) |
46 |
45
|
anbi1i |
⊢ ( ( 𝑧 ∈ ( 𝑥 ∩ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
47 |
|
anass |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) ) |
48 |
46 47
|
bitri |
⊢ ( ( 𝑧 ∈ ( 𝑥 ∩ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) ) |
49 |
48
|
rexbii2 |
⊢ ( ∃ 𝑧 ∈ ( 𝑥 ∩ 𝐴 ) ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
50 |
42 49
|
syl6ibr |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) → ∃ 𝑧 ∈ ( 𝑥 ∩ 𝐴 ) ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
51 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
52 |
|
shincl |
⊢ ( ( 𝑥 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → ( 𝑥 ∩ 𝐴 ) ∈ Sℋ ) |
53 |
8 51 52
|
sylancl |
⊢ ( 𝑥 ∈ Cℋ → ( 𝑥 ∩ 𝐴 ) ∈ Sℋ ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑥 ∩ 𝐴 ) ∈ Sℋ ) |
55 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
56 |
|
shsel |
⊢ ( ( ( 𝑥 ∩ 𝐴 ) ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝑦 ∈ ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝑥 ∩ 𝐴 ) ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
57 |
54 55 56
|
sylancl |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝑥 ∩ 𝐴 ) ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) ) ) |
58 |
50 57
|
sylibrd |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = ( 𝑧 +ℎ 𝑤 ) → 𝑦 ∈ ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ) ) |
59 |
6 58
|
syl5bi |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) → 𝑦 ∈ ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ) ) |
60 |
59
|
expimpd |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → 𝑦 ∈ ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ) ) |
61 |
5 60
|
syl5bi |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) → ( 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 +ℋ 𝐵 ) ) → 𝑦 ∈ ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ) ) |
62 |
61
|
ssrdv |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) → ( 𝑥 ∩ ( 𝐴 +ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 +ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ) |
64 |
4 63
|
eqsstrrd |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ) |
65 |
|
chincl |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝑥 ∩ 𝐴 ) ∈ Cℋ ) |
66 |
1 65
|
mpan2 |
⊢ ( 𝑥 ∈ Cℋ → ( 𝑥 ∩ 𝐴 ) ∈ Cℋ ) |
67 |
|
chslej |
⊢ ( ( ( 𝑥 ∩ 𝐴 ) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
68 |
66 2 67
|
sylancl |
⊢ ( 𝑥 ∈ Cℋ → ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
69 |
68
|
ad2antrl |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ) → ( ( 𝑥 ∩ 𝐴 ) +ℋ 𝐵 ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
70 |
64 69
|
sstrd |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝑥 ∈ Cℋ ∧ 𝐵 ⊆ 𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
71 |
70
|
exp32 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( 𝑥 ∈ Cℋ → ( 𝐵 ⊆ 𝑥 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
72 |
71
|
ralrimiv |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
73 |
|
dmdbr2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
74 |
1 2 73
|
mp2an |
⊢ ( 𝐴 𝑀ℋ* 𝐵 ↔ ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
75 |
72 74
|
sylibr |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ* 𝐵 ) |