Metamath Proof Explorer


Theorem cmmdi

Description: Commuting subspaces form a modular pair. (Contributed by NM, 16-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 AC
sumdmdi.2 BC
Assertion cmmdi A𝐶BA𝑀B

Proof

Step Hyp Ref Expression
1 sumdmdi.1 AC
2 sumdmdi.2 BC
3 1 2 cmcm4i A𝐶BA𝐶B
4 1 choccli AC
5 2 choccli BC
6 4 5 osumcor2i A𝐶BA+B=AB
7 3 6 sylbi A𝐶BA+B=AB
8 4 5 sumdmdii A+B=ABA𝑀*B
9 7 8 syl A𝐶BA𝑀*B
10 mddmd ACBCA𝑀BA𝑀*B
11 1 2 10 mp2an A𝑀BA𝑀*B
12 9 11 sylibr A𝐶BA𝑀B