Metamath Proof Explorer


Theorem cmmdi

Description: Commuting subspaces form a modular pair. (Contributed by NM, 16-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 A C
sumdmdi.2 B C
Assertion cmmdi A 𝐶 B A 𝑀 B

Proof

Step Hyp Ref Expression
1 sumdmdi.1 A C
2 sumdmdi.2 B C
3 1 2 cmcm4i A 𝐶 B A 𝐶 B
4 1 choccli A C
5 2 choccli B C
6 4 5 osumcor2i A 𝐶 B A + B = A B
7 3 6 sylbi A 𝐶 B A + B = A B
8 4 5 sumdmdii A + B = A B A 𝑀 * B
9 7 8 syl A 𝐶 B A 𝑀 * B
10 mddmd A C B C A 𝑀 B A 𝑀 * B
11 1 2 10 mp2an A 𝑀 B A 𝑀 * B
12 9 11 sylibr A 𝐶 B A 𝑀 B