Metamath Proof Explorer


Theorem osumcor2i

Description: Corollary of osumi , showing it holds under the weaker hypothesis that A and B commute. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses osum.1 AC
osum.2 BC
Assertion osumcor2i A𝐶BA+B=AB

Proof

Step Hyp Ref Expression
1 osum.1 AC
2 osum.2 BC
3 1 2 cmcm2i A𝐶BA𝐶B
4 2 choccli BC
5 1 4 cmbr4i A𝐶BAABB
6 3 5 bitri A𝐶BAABB
7 1 choccli AC
8 7 4 chjcli ABC
9 1 8 chincli AABC
10 9 2 osumi AABBAAB+B=AABB
11 7 4 chjcomi AB=BA
12 11 ineq2i AAB=ABA
13 12 oveq1i AABB=ABAB
14 4 7 chjcli BAC
15 1 14 chincli ABAC
16 15 2 chjcomi ABAB=BABA
17 13 16 eqtri AABB=BABA
18 2 1 pjoml4i BABA=BA
19 2 1 chjcomi BA=AB
20 18 19 eqtri BABA=AB
21 17 20 eqtri AABB=AB
22 21 eqeq2i AAB+B=AABBAAB+B=AB
23 inss1 AABA
24 9 chshii AABS
25 1 chshii AS
26 2 chshii BS
27 24 25 26 shlessi AABAAAB+BA+B
28 23 27 ax-mp AAB+BA+B
29 sseq1 AAB+B=ABAAB+BA+BABA+B
30 28 29 mpbii AAB+B=ABABA+B
31 22 30 sylbi AAB+B=AABBABA+B
32 10 31 syl AABBABA+B
33 6 32 sylbi A𝐶BABA+B
34 1 2 chsleji A+BAB
35 33 34 jctil A𝐶BA+BABABA+B
36 eqss A+B=ABA+BABABA+B
37 35 36 sylibr A𝐶BA+B=AB