Metamath Proof Explorer


Theorem osum

Description: If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of Kalmbach p. 67. (Contributed by NM, 31-Oct-2005) (New usage is discouraged.)

Ref Expression
Assertion osum ACBCABA+B=AB

Proof

Step Hyp Ref Expression
1 sseq1 A=ifACAABifACAB
2 oveq1 A=ifACAA+B=ifACA+B
3 oveq1 A=ifACAAB=ifACAB
4 2 3 eqeq12d A=ifACAA+B=ABifACA+B=ifACAB
5 1 4 imbi12d A=ifACAABA+B=ABifACABifACA+B=ifACAB
6 fveq2 B=ifBCBB=ifBCB
7 6 sseq2d B=ifBCBifACABifACAifBCB
8 oveq2 B=ifBCBifACA+B=ifACA+ifBCB
9 oveq2 B=ifBCBifACAB=ifACAifBCB
10 8 9 eqeq12d B=ifBCBifACA+B=ifACABifACA+ifBCB=ifACAifBCB
11 7 10 imbi12d B=ifBCBifACABifACA+B=ifACABifACAifBCBifACA+ifBCB=ifACAifBCB
12 ifchhv ifACAC
13 ifchhv ifBCBC
14 12 13 osumi ifACAifBCBifACA+ifBCB=ifACAifBCB
15 5 11 14 dedth2h ACBCABA+B=AB
16 15 3impia ACBCABA+B=AB