Metamath Proof Explorer


Theorem cmbr4i

Description: Alternate definition for the commutes relation. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 AC
pjoml2.2 BC
Assertion cmbr4i A𝐶BAABB

Proof

Step Hyp Ref Expression
1 pjoml2.1 AC
2 pjoml2.2 BC
3 1 2 cmbr3i A𝐶BAAB=AB
4 inss2 ABB
5 sseq1 AAB=ABAABBABB
6 4 5 mpbiri AAB=ABAABB
7 inss1 AABA
8 7 jctl AABBAABAAABB
9 ssin AABAAABBAABAB
10 8 9 sylib AABBAABAB
11 1 choccli AC
12 2 11 chub2i BAB
13 sslin BABABAAB
14 12 13 ax-mp ABAAB
15 10 14 jctir AABBAABABABAAB
16 eqss AAB=ABAABABABAAB
17 15 16 sylibr AABBAAB=AB
18 6 17 impbii AAB=ABAABB
19 3 18 bitri A𝐶BAABB