Metamath Proof Explorer


Theorem chslej

Description: Subspace sum is smaller than subspace join. Remark in Kalmbach p. 65. (Contributed by NM, 12-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion chslej ACBCA+BAB

Proof

Step Hyp Ref Expression
1 chsh ACAS
2 chsh BCBS
3 shslej ASBSA+BAB
4 1 2 3 syl2an ACBCA+BAB