Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shsub2 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐵 +ℋ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsub1 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) ) | |
2 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) | |
3 | 1 2 | sseqtrd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐵 +ℋ 𝐴 ) ) |