Metamath Proof Explorer


Theorem mdsl3

Description: Sublattice mapping for a modular pair. Part of Theorem 1.3 of MaedaMaeda p. 2. (Contributed by NM, 26-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion mdsl3 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐵 ) ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 mdi ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀 𝐵𝐶𝐵 ) ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = ( 𝐶 ( 𝐴𝐵 ) ) )
2 1 3adantr2 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐵 ) ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = ( 𝐶 ( 𝐴𝐵 ) ) )
3 chincl ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ) ∈ C )
4 chlejb2 ( ( ( 𝐴𝐵 ) ∈ C𝐶C ) → ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ( 𝐶 ( 𝐴𝐵 ) ) = 𝐶 ) )
5 3 4 stoic3 ( ( 𝐴C𝐵C𝐶C ) → ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ( 𝐶 ( 𝐴𝐵 ) ) = 𝐶 ) )
6 5 biimpa ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴𝐵 ) ⊆ 𝐶 ) → ( 𝐶 ( 𝐴𝐵 ) ) = 𝐶 )
7 6 3ad2antr2 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐵 ) ) → ( 𝐶 ( 𝐴𝐵 ) ) = 𝐶 )
8 2 7 eqtrd ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐵 ) ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = 𝐶 )