Metamath Proof Explorer


Theorem mdsl3

Description: Sublattice mapping for a modular pair. Part of Theorem 1.3 of MaedaMaeda p. 2. (Contributed by NM, 26-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion mdsl3 ACBCCCA𝑀BABCCBCAB=C

Proof

Step Hyp Ref Expression
1 mdi ACBCCCA𝑀BCBCAB=CAB
2 1 3adantr2 ACBCCCA𝑀BABCCBCAB=CAB
3 chincl ACBCABC
4 chlejb2 ABCCCABCCAB=C
5 3 4 stoic3 ACBCCCABCCAB=C
6 5 biimpa ACBCCCABCCAB=C
7 6 3ad2antr2 ACBCCCA𝑀BABCCBCAB=C
8 2 7 eqtrd ACBCCCA𝑀BABCCBCAB=C