| Step |
Hyp |
Ref |
Expression |
| 1 |
|
merco1lem5 |
⊢ ( ( ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) ) |
| 2 |
|
merco1lem3 |
⊢ ( ( ( ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) → ⊥ ) → ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) ) → ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) |
| 4 |
|
merco1lem4 |
⊢ ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) → ( ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) |
| 6 |
|
merco1lem5 |
⊢ ( ( ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) → ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) |
| 8 |
|
merco1lem4 |
⊢ ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) → ( ( 𝜑 → 𝜏 ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( ( 𝜑 → 𝜏 ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) |
| 10 |
|
merco1 |
⊢ ( ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → 𝜑 ) → ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → 𝜓 ) ) ) |
| 11 |
|
merco1lem2 |
⊢ ( ( ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → 𝜑 ) → ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → 𝜓 ) ) ) → ( ( ( 𝜑 → 𝜏 ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) → ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → 𝜓 ) ) ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ( ( ( 𝜑 → 𝜏 ) → ( ( ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → ⊥ ) ) → ⊥ ) → ⊥ ) ) → ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → 𝜓 ) ) ) |
| 13 |
9 12
|
ax-mp |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → ( 𝜑 → 𝜏 ) ) → ⊥ ) → 𝜓 ) ) |