| Step | Hyp | Ref | Expression | 
						
							| 1 |  | merco2 | ⊢ ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) ) | 
						
							| 2 |  | merco2 | ⊢ ( ( ( ( 𝜂  →  𝜑 )  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜃 ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) | 
						
							| 3 |  | merco2 | ⊢ ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜃  →  𝜒 ) ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) | 
						
							| 4 |  | mercolem1 | ⊢ ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜃  →  𝜒 ) ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) )  →  ( ( ( ⊥  →  𝜑 )  →  ( 𝜃  →  𝜒 ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( ( ( ⊥  →  𝜑 )  →  ( 𝜃  →  𝜒 ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) | 
						
							| 6 |  | mercolem1 | ⊢ ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜃  →  𝜒 ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) )  →  ( ( 𝜃  →  𝜒 )  →  ( ( ⊥  →  𝜑 )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ( 𝜃  →  𝜒 )  →  ( ( ⊥  →  𝜑 )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) ) | 
						
							| 8 |  | merco2 | ⊢ ( ( ( 𝜃  →  𝜒 )  →  ( ( ⊥  →  𝜑 )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) )  →  ( ( ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) )  →  𝜃 )  →  ( ( ( 𝜂  →  𝜑 )  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜃 ) ) ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( ( ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) )  →  𝜃 )  →  ( ( ( 𝜂  →  𝜑 )  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜃 ) ) ) | 
						
							| 10 |  | mercolem3 | ⊢ ( ( ( ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) )  →  𝜃 )  →  ( ( ( 𝜂  →  𝜑 )  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜃 ) ) )  →  ( ( ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) )  →  𝜃 )  →  ( ( ⊥  →  𝜑 )  →  ( ( ( 𝜂  →  𝜑 )  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜃 ) ) ) ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( ( ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) )  →  𝜃 )  →  ( ( ⊥  →  𝜑 )  →  ( ( ( 𝜂  →  𝜑 )  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜃 ) ) ) ) | 
						
							| 12 |  | merco2 | ⊢ ( ( ( ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) )  →  𝜃 )  →  ( ( ⊥  →  𝜑 )  →  ( ( ( 𝜂  →  𝜑 )  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜃 ) ) ) )  →  ( ( ( ( ( 𝜂  →  𝜑 )  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜃 ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) ) ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ( ( ( ( 𝜂  →  𝜑 )  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜃 ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) ) ) | 
						
							| 14 | 2 13 | ax-mp | ⊢ ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) ) | 
						
							| 15 | 1 14 | ax-mp | ⊢ ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) ) | 
						
							| 16 | 1 15 | ax-mp | ⊢ ( ( 𝜃  →  ( 𝜂  →  𝜑 ) )  →  ( ( ( 𝜃  →  𝜒 )  →  𝜑 )  →  ( 𝜏  →  ( 𝜂  →  𝜑 ) ) ) ) |