| Step |
Hyp |
Ref |
Expression |
| 1 |
|
merco2 |
⊢ ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) |
| 2 |
|
merco2 |
⊢ ( ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) |
| 3 |
|
merco2 |
⊢ ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) |
| 4 |
|
mercolem1 |
⊢ ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → ( ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) |
| 6 |
|
mercolem1 |
⊢ ( ( ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) → ( ( 𝜃 → 𝜒 ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ( 𝜃 → 𝜒 ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) |
| 8 |
|
merco2 |
⊢ ( ( ( 𝜃 → 𝜒 ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) → ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) |
| 10 |
|
mercolem3 |
⊢ ( ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) → ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) |
| 12 |
|
merco2 |
⊢ ( ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) → ( ( ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) ) ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ( ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) ) |
| 14 |
2 13
|
ax-mp |
⊢ ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) |
| 15 |
1 14
|
ax-mp |
⊢ ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) |
| 16 |
1 15
|
ax-mp |
⊢ ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) |