Description: A metric space is regular. (Contributed by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metnrm.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | metreg | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Reg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metnrm.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | metnrm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Nrm ) |
| 3 | 1 | methaus | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
| 4 | haust1 | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Fre ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Fre ) |
| 6 | nrmreg | ⊢ ( ( 𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre ) → 𝐽 ∈ Reg ) | |
| 7 | 2 5 6 | syl2anc | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Reg ) |