Metamath Proof Explorer


Theorem metreg

Description: A metric space is regular. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypothesis metnrm.j ⊒ 𝐽 = ( MetOpen β€˜ 𝐷 )
Assertion metreg ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐽 ∈ Reg )

Proof

Step Hyp Ref Expression
1 metnrm.j ⊒ 𝐽 = ( MetOpen β€˜ 𝐷 )
2 1 metnrm ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐽 ∈ Nrm )
3 1 methaus ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐽 ∈ Haus )
4 haust1 ⊒ ( 𝐽 ∈ Haus β†’ 𝐽 ∈ Fre )
5 3 4 syl ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐽 ∈ Fre )
6 nrmreg ⊒ ( ( 𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre ) β†’ 𝐽 ∈ Reg )
7 2 5 6 syl2anc ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐽 ∈ Reg )