Description: A metric space is regular. (Contributed by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metnrm.j | |- J = ( MetOpen ` D ) |
|
| Assertion | metreg | |- ( D e. ( *Met ` X ) -> J e. Reg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metnrm.j | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | metnrm | |- ( D e. ( *Met ` X ) -> J e. Nrm ) |
| 3 | 1 | methaus | |- ( D e. ( *Met ` X ) -> J e. Haus ) |
| 4 | haust1 | |- ( J e. Haus -> J e. Fre ) |
|
| 5 | 3 4 | syl | |- ( D e. ( *Met ` X ) -> J e. Fre ) |
| 6 | nrmreg | |- ( ( J e. Nrm /\ J e. Fre ) -> J e. Reg ) |
|
| 7 | 2 5 6 | syl2anc | |- ( D e. ( *Met ` X ) -> J e. Reg ) |