Metamath Proof Explorer


Theorem minimp-syllsimp

Description: Derivation of Syll-Simp ( jarr ) from ax-mp and minimp . (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion minimp-syllsimp ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 minimp ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) )
2 minimp ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) ) ) )
3 minimp ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) )
4 2 3 ax-mp ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) )
5 minimp ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) ) )
6 minimp ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) )
7 minimp ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) )
8 5 6 7 mp2 ( ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) )
9 1 4 8 mp2b ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) )
10 minimp ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) )
11 minimp ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) ) )
12 minimp ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) ) )
13 minimp ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) )
14 minimp ( ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) ) ) → ( ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) ) ) )
15 12 13 14 mp2 ( ( ( ( 𝜑𝜓 ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) ) → ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) )
16 10 11 15 mp2b ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) )
17 minimp ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) )
18 minimp ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( ( 𝜓 → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( 𝜓𝜒 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) ) )
19 minimp ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) ) ) )
20 minimp ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜓 → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( 𝜓𝜒 ) ) ) )
21 minimp ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( 𝜓 → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( 𝜓𝜒 ) ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( ( 𝜓 → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( 𝜓𝜒 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) ) ) )
22 19 20 21 mp2 ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) ) → ( ( ( 𝜓 → ( ( 𝜑𝜓 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( 𝜓𝜒 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) )
23 17 18 22 mp2b ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) )
24 9 16 23 mp2b ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) )