Description: Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnusnd.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
mnusnd.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | ||
mnusnd.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
Assertion | mnusnd | ⊢ ( 𝜑 → { 𝐴 } ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnusnd.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
2 | mnusnd.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | |
3 | mnusnd.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
4 | 1 2 3 | mnupwd | ⊢ ( 𝜑 → 𝒫 𝐴 ∈ 𝑈 ) |
5 | snsspw | ⊢ { 𝐴 } ⊆ 𝒫 𝐴 | |
6 | 5 | a1i | ⊢ ( 𝜑 → { 𝐴 } ⊆ 𝒫 𝐴 ) |
7 | 1 2 4 6 | mnussd | ⊢ ( 𝜑 → { 𝐴 } ∈ 𝑈 ) |