Metamath Proof Explorer


Theorem mnusnd

Description: Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnusnd.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnusnd.2 ( 𝜑𝑈𝑀 )
mnusnd.3 ( 𝜑𝐴𝑈 )
Assertion mnusnd ( 𝜑 → { 𝐴 } ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 mnusnd.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnusnd.2 ( 𝜑𝑈𝑀 )
3 mnusnd.3 ( 𝜑𝐴𝑈 )
4 1 2 3 mnupwd ( 𝜑 → 𝒫 𝐴𝑈 )
5 snsspw { 𝐴 } ⊆ 𝒫 𝐴
6 5 a1i ( 𝜑 → { 𝐴 } ⊆ 𝒫 𝐴 )
7 1 2 4 6 mnussd ( 𝜑 → { 𝐴 } ∈ 𝑈 )